期刊文献+

Experimental investigation of nanosecond discharge plasma aerodynamic actuation 被引量:2

Experimental investigation of nanosecond discharge plasma aerodynamic actuation
下载PDF
导出
摘要 In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between tile first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s. In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between tile first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期401-405,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 50906100 and 10972236) the Science Foundation of National Excellent Doctoral Dissertation of China (Grant No. 201172)
关键词 plasma aerodynamic actuation nanosecond pulsed discharge plasma flow control opti- cal emission spectra plasma aerodynamic actuation, nanosecond pulsed discharge, plasma flow control, opti- cal emission spectra
  • 相关文献

参考文献18

  • 1Corke T C, Post M L and Orlov D M 2010 Prog. Aerospace Sci. 43 505.
  • 2Moreau E 2007 J. Phys. D: Appl. Phys. 40 605.
  • 3Roth J R 2003 Phys. Plasmas 10 2117.
  • 4Enloe C L, McLaughlin T E, Dyken R D V and Kachner K D 2004 AIAA J. 42 589.
  • 5Wu Y, Li Y H, Jia M, Song H M, Guo Z G, Zhu X M and Pu Y K 2008 Awl. Phys. Lett. 93 031503.
  • 6Pinheiro M J 2006 Plasma Process. Polym. 3 135.
  • 7Li Y H, Wu Y, Zhou M, Su C B, Zhang X W and Zhu J Q 2010 Exp. Fluids 48 1015.
  • 8Roupassov D V, Nikipelov A A, Nudnova M M and Starikovskii A Y 2009 AIAA J. 47 168.
  • 9Likhanskii A V, Shneider M N, Macheret S O and Miles R B 2007 Phys. Plasmas 14 073501.
  • 10Opaits D F, Likhanskii A V, Neretti G, Zaidi S, Shneider M N, Miles R B and Macheret S O 2008 J. Appl. Phys. 104 043304.

同被引文献22

  • 1李国强.平流层螺旋桨设计与等离子体增效技术研究[D].北京:装备指挥技术学院,2012.
  • 2Ben-Yakar A, Hanson R K. Cavity flameholders for ignition and flame stabilization in scramjets: review and experimental study[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, USA: AIAA, 1998: 98-3122.
  • 3Suchomel C, van Wie D, Risha D. Research issues resulting from an assessment of technologies for future hypersonic aerospace systems[C] //42rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2004: 1357.
  • 4Li Y H, Wang J, Wang C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science & Technology, 2010, 19(2): 025016.
  • 5Starikovskii A Y, Nikipelov A A, Nudnova M M. SDBD plasma actua- tor with nanosecond pulse-periodic discharge[J]. Plasma Sources Science & Technology, 2009, 18(3): 034015.
  • 6Roupassov D V, Nikipelov A A, Nudnova M M. Flow separation con- trol by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185.
  • 7Bisek N J, Poggiey J, Nishihara M, et al. Computational and experi- mental analysis of maeh 5 air flow over a cylinder with a nanosecond pulse discharge[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, USA: AIAA, 2012: 0186.
  • 8Leonov S B, Yarantsev D A. Mechanisms of flow control by near-surface electrical discharge generation[C]//43^rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2005: 780.
  • 9Gaitonde D V, McCrink M H. A semi-empirical model of a nanose- cond pulsed plasma actuator for flow control simulations with LES[C] //50^th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, USA: AIAA, 2012: 0184.
  • 10李应红,吴云,梁华,宋慧敏,贾敏.提高抑制流动分离能力的等离子体冲击流动控制原理[J].科学通报,2010,55(31):3060-3068. 被引量:65

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部