摘要
A plasma column with a length of about 65 cm is generated in the upstream region of a plasma jet using dielectric barrier discharge configurations. The effects of experimental parameters such as the amplitude of the applied voltage and the driving frequency are investigated in aspects of the plasma column by the optical method. Results show that both the plasma length and the propagating velocity, as well as the discharge current, increase with the increase in the applied voltage or its frequency. The discharge mechanism is analysed qualitatively based on streamer theory, where photo-ionization is important. Furthermore, optical emission spectroscopy is used to investigate the electric field intensity of the upstream region.
A plasma column with a length of about 65 cm is generated in the upstream region of a plasma jet using dielectric barrier discharge configurations. The effects of experimental parameters such as the amplitude of the applied voltage and the driving frequency are investigated in aspects of the plasma column by the optical method. Results show that both the plasma length and the propagating velocity, as well as the discharge current, increase with the increase in the applied voltage or its frequency. The discharge mechanism is analysed qualitatively based on streamer theory, where photo-ionization is important. Furthermore, optical emission spectroscopy is used to investigate the electric field intensity of the upstream region.
基金
supported by the National Natural Science Foundation of China (Grant Nos. 10805013 and 51077035)
the Natural Science Foundation of Hebei Province, China (Grant Nos. A2009000149 and A2011201132)
the Key Project of Chinese Ministry of Education, China (Grant No. 210014)
the Science Funds of Hebei Education Department for Outstanding Youth (Grant No. Y2011120)
the Hebei University Funds for Distinguished Young Scientists