摘要
Oxygen vacancy formation and migration in La0.9Sr0.1Ga0.8Mg0.2O3-5 (LSGM) with various crystal symmetries (cubic, rhombohedral, orthorhombic, and monoclinic) are studied by employing first-principles calculations based on density functional theory (DFT). It is shown that the cubic LSGM has the smallest band gap, oxygen vacancy formation energy, and migration barrier, while the other three structures give rise to much larger values for these quantities, implying the best oxygen ion conductivity of the cubic LSGM among the four crystal structures. In out calculations, one oxygen vacancy migration pathway is considered in the cubic and rhombohedral structures due to all the oxygen sites being equivalent in them, while two vacancy migration pathways with different migration barriers are found in the orthorhombic and monoclinic symmetries owing to the existence of nonequivalent O1 and 02 oxygen sites. The migration energies along the migration pathway linking the two 02 sites are obviously lower than those along the pathway linking the O1 and 02 sites. Considering the phase transitions at high temperatures, the results obtained in this paper can not only explain the experimentally observed different behaviours of the oxygen ionic conductivity of LSGM with different symmetries, but also predict the rational crystal structures of LSGM for solid oxide fuel cell applications.
Oxygen vacancy formation and migration in La0.9Sr0.1Ga0.8Mg0.2O3-5 (LSGM) with various crystal symmetries (cubic, rhombohedral, orthorhombic, and monoclinic) are studied by employing first-principles calculations based on density functional theory (DFT). It is shown that the cubic LSGM has the smallest band gap, oxygen vacancy formation energy, and migration barrier, while the other three structures give rise to much larger values for these quantities, implying the best oxygen ion conductivity of the cubic LSGM among the four crystal structures. In out calculations, one oxygen vacancy migration pathway is considered in the cubic and rhombohedral structures due to all the oxygen sites being equivalent in them, while two vacancy migration pathways with different migration barriers are found in the orthorhombic and monoclinic symmetries owing to the existence of nonequivalent O1 and 02 oxygen sites. The migration energies along the migration pathway linking the two 02 sites are obviously lower than those along the pathway linking the O1 and 02 sites. Considering the phase transitions at high temperatures, the results obtained in this paper can not only explain the experimentally observed different behaviours of the oxygen ionic conductivity of LSGM with different symmetries, but also predict the rational crystal structures of LSGM for solid oxide fuel cell applications.
基金
supported by the National Natural Science Foundation of China (Grant No.10974183)