On the Number of Polynomials with Small Discriminants in the Euclidean and p-adic Metrics
On the Number of Polynomials with Small Discriminants in the Euclidean and p-adic Metrics
摘要
In this article it is proved that there exist a large number of polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously. The measure of the set of points which satisfy certain polynomial and derivative conditions is also determined.
In this article it is proved that there exist a large number of polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously. The measure of the set of points which satisfy certain polynomial and derivative conditions is also determined.
基金
supported by the Science Foundation Ireland Programme (Grant No. RFP/MTH1512)
参考文献12
-
1Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J., 11, 257-262 (1964).
-
2Bernik, V., Gotze, F., Kukso, O.: Lower bounds for the number of integral polynomials with given order of discrimants. Acta Arith., 133, 375-390 (2008).
-
3Bernik, V., Gotze, F., Kukso, O.: On the divisibility of the discriminant of an integral polynomial by prime powers. Lith. Math. J., 48, 380-396 (2008).
-
4Beresnevich, V., Bernik, V., Gbtze, F.: The distribution of close conjugate algebraic numbers. Compos. Math., 146, 1165-1179 (2010).
-
5Bugeaud, Y., Dujella, A.: Root separation for irreducible integer polynomials. Bull. London Math. Soe., doi: 10.1112/blms/bdr085 (2011).
-
6Bugeaud, Y., Mignotte, M.: Polynomial root separation. Intern. J. Number Theory, 6, 587-602 (2010).
-
7Evertse, J. H.: Distances between the conugates of an algebraic number. Publ. Math. Debrecen, 65, 323-340 (2004).
-
8Schonhage, A.: Polynomial root separation examples. J. Symbolic Comput., 41, 1080-1090 (2006).
-
9Zeludevich, F.: Simultane diophantische Approximationen abhangiger Grossen in mehreren Metriken. Acta Arith., 46,285-296 (1986).
-
10Bernik, V., Budarina, N., Dickinson, D.: Simultaneous Diophantine approximation in the real, complex and p-adic fields. Math. Proc. Camb. Phil. Soc., 149, 193-216 (2010).
-
1薛嘉庆.一阶段单纯形法[J].东北工学院学报,1989,10(5):471-476.
-
2高霞萍.判别数项级数发散的一种方法——加括号法[J].浙江海洋学院学报(自然科学版),2002,21(1):91-94.
-
3张顺寿.可行方向法的统一理论及其应用(1)[J].贵州工学院学报,1995,24(5):1-7. 被引量:3
-
4林美娟.数项级数和的几种求法[J].科技视界,2015(30):248-249.
-
5张贤科.DENSITY OF DISCRIMINANTS OF FIELDS OF TYPE (2, 2, …, 2)[J].Chinese Science Bulletin,1983,28(12).
-
6吕瑞峰.LP问题有无穷多最优解的条件[J].晋中学院学报,2005,22(6):20-22.
-
7谭中华.素数判别法的改进[J].广东工业大学学报,2002,19(4):90-91.
-
8范家骅.关于水库浑水潜入点判别数的确定方法*[J].泥沙研究,2008,33(1):74-80. 被引量:11
-
9张贤科.Classification and prime decomposition of abelian q-fields[J].Chinese Science Bulletin,1996,41(24):2025-2028. 被引量:1
-
10李军燕.Volterra竞争模型的动态分歧分析[J].四川师范大学学报(自然科学版),2013,36(5):669-672. 被引量:2