期刊文献+

On the Number of Polynomials with Small Discriminants in the Euclidean and p-adic Metrics

On the Number of Polynomials with Small Discriminants in the Euclidean and p-adic Metrics
原文传递
导出
摘要 In this article it is proved that there exist a large number of polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously. The measure of the set of points which satisfy certain polynomial and derivative conditions is also determined. In this article it is proved that there exist a large number of polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously. The measure of the set of points which satisfy certain polynomial and derivative conditions is also determined.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第3期469-476,共8页 数学学报(英文版)
基金 supported by the Science Foundation Ireland Programme (Grant No. RFP/MTH1512)
关键词 Diophantine approximation DISCRIMINANT polynomial inequalities Diophantine approximation, discriminant, polynomial inequalities
  • 相关文献

参考文献12

  • 1Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J., 11, 257-262 (1964).
  • 2Bernik, V., Gotze, F., Kukso, O.: Lower bounds for the number of integral polynomials with given order of discrimants. Acta Arith., 133, 375-390 (2008).
  • 3Bernik, V., Gotze, F., Kukso, O.: On the divisibility of the discriminant of an integral polynomial by prime powers. Lith. Math. J., 48, 380-396 (2008).
  • 4Beresnevich, V., Bernik, V., Gbtze, F.: The distribution of close conjugate algebraic numbers. Compos. Math., 146, 1165-1179 (2010).
  • 5Bugeaud, Y., Dujella, A.: Root separation for irreducible integer polynomials. Bull. London Math. Soe., doi: 10.1112/blms/bdr085 (2011).
  • 6Bugeaud, Y., Mignotte, M.: Polynomial root separation. Intern. J. Number Theory, 6, 587-602 (2010).
  • 7Evertse, J. H.: Distances between the conugates of an algebraic number. Publ. Math. Debrecen, 65, 323-340 (2004).
  • 8Schonhage, A.: Polynomial root separation examples. J. Symbolic Comput., 41, 1080-1090 (2006).
  • 9Zeludevich, F.: Simultane diophantische Approximationen abhangiger Grossen in mehreren Metriken. Acta Arith., 46,285-296 (1986).
  • 10Bernik, V., Budarina, N., Dickinson, D.: Simultaneous Diophantine approximation in the real, complex and p-adic fields. Math. Proc. Camb. Phil. Soc., 149, 193-216 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部