期刊文献+

Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces

Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces
原文传递
导出
摘要 An earlier article [Bonahon, F., Liu, X. B.: Representations of the quantum Teichmfiller space and invariants of surface diffeomorphisms. Geom. Topol., 11, 889-937 (2007)] introduced new invariants for pseudo-Anosov diffeomorphisms of surface, based on the representation theory of the quantum Teichmiiller space. We explicitly compute these quantum hyperbolic invariants in the case of the 1-puncture torus and the 4-puncture sphere. An earlier article [Bonahon, F., Liu, X. B.: Representations of the quantum Teichmfiller space and invariants of surface diffeomorphisms. Geom. Topol., 11, 889-937 (2007)] introduced new invariants for pseudo-Anosov diffeomorphisms of surface, based on the representation theory of the quantum Teichmiiller space. We explicitly compute these quantum hyperbolic invariants in the case of the 1-puncture torus and the 4-puncture sphere.
作者 Xiaobo LIU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第4期759-770,共12页 数学学报(英文版)
基金 Partially supported by NSF grant DMS-0103511 at the University of Southern California
关键词 Quantum Teichmiiller space mapping torus REPRESENTATIONS Quantum Teichmiiller space, mapping torus, representations
  • 相关文献

参考文献5

  • 1Bonahon, F., Liu, X. B.: Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol., 11, 889-937 (2007).
  • 2Fock, V. V., Chekhov, L. O.: Quantum Teichmüller spaces (in Russian). Teoret. Mat. Fiz., 120, 511-528 (1999); translation in Theoret. and Math. Phys., 120, 1245-1259 (1999).
  • 3Guéritaud, F.: On canonical triangulations of once-punctured torus bundles and two-bridge link complements (with an appendix by David Futer). Geom. Topol., 10, 1239-1284 (electronic) (2006).
  • 4Kashaev, R.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys., 43, 105-115 (1998).
  • 5Liu, X. B.: The quantum Teichmüller space as a noncommutative algebraic object. Journal of Knot Theory and its Ramifications, 18(5), 705-726 (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部