期刊文献+

A Remark on the Beale-Kato-Majda Criterion for the 3D MHD Equations with Zero Kinematic Viscosity

A Remark on the Beale-Kato-Majda Criterion for the 3D MHD Equations with Zero Kinematic Viscosity
原文传递
导出
摘要 In this paper, we study the blow-up criterion of smooth solutions to the 3D magneto-hydrodynamic system in B^0∞,∞. We show that a smooth solution of the 3D MHD equations with zero kinematic viscosity in the whole space R3 breaks down if and only if certain norm of the vorticity blows up at the same time. In this paper, we study the blow-up criterion of smooth solutions to the 3D magneto-hydrodynamic system in B^0∞,∞. We show that a smooth solution of the 3D MHD equations with zero kinematic viscosity in the whole space R3 breaks down if and only if certain norm of the vorticity blows up at the same time.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期209-214,共6页 应用数学学报(英文版)
关键词 Magneto-hydrodynamic equations with zero viscosity B^0∞ space blow-up criterion Magneto-hydrodynamic equations with zero viscosity, B^0∞,∞ space, blow-up criterion
  • 相关文献

参考文献1

二级参考文献9

  • 1Beale, J.T., Kato, T., Majda, A.J. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys., 94:61-66 (1984)
  • 2Bergh, J., Lofstrom, J. Interpolation spaces, An Introduction. Springer-Verlag, New York, 1976
  • 3Caflisch, R.E., I. Klapper, I., Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 184:443-455 (1997)
  • 4Frazier. M., Tortes, R., Weiss, G. The boundedness of Caldern-Zygmund operators on the spaces F^αq p.Rev. Mat. Iberoamericana 4:41-72 (1988)
  • 5Kozono, H., Ogawa, T., Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z., 242:251-278 (2002)
  • 6Majda, A.J. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53, Springer-Verlag, New York, 1984
  • 7Majda, A.J. Bertozzi, A.L. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics,27, Cambridge University Press, Cambridge, 2002
  • 8wStein, E.M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, 1993
  • 9Tribel, H. Theory of Function Spaces.Monograph in mathematics, Vol.78, Birkhauser Verlag, Basel, 1983

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部