期刊文献+

A New Periodic Solution to Jacobi Elliptic Functions of MKdV Equation and BBM Equation 被引量:4

A New Periodic Solution to Jacobi Elliptic Functions of MKdV Equation and BBM Equation
原文传递
导出
摘要 Based on the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to get a new kind of solutions of nonlinear evolution equations. New exact solutions to the Jacobi elliptic function of MKdV equations and Benjamin-Bona-Mahoney (BBM) equations are obtained with the aid of computer algebraic system Maple. The method is also valid for other (l+l)-dimensional and higher dimensional systems. Based on the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to get a new kind of solutions of nonlinear evolution equations. New exact solutions to the Jacobi elliptic function of MKdV equations and Benjamin-Bona-Mahoney (BBM) equations are obtained with the aid of computer algebraic system Maple. The method is also valid for other (l+l)-dimensional and higher dimensional systems.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期409-415,共7页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 10647112) the Foundation of Donghua University
关键词 (1+1)-dimensional MKdV equation BBM equation auxiliary equation method traveling wavesolution NONLINEAR (1+1)-dimensional MKdV equation, BBM equation, auxiliary equation method, traveling wavesolution, nonlinear
  • 相关文献

参考文献5

二级参考文献111

  • 1Commun. Theor. Phys, (Beijing, China) Author' Index to Volume 43 (2005)[J].Communications in Theoretical Physics,2005,44(6X):1139-1145. 被引量:4
  • 2C.T. Yah, Phys. Lett. A224 (1996) 77.
  • 3M.L. Wang, Phys. Lett. A199 (1995) 169.
  • 4M.L. Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A216(1996) 67.
  • 5L. Yang, Z. Zhu, and Y. Wang, Phys. Lett. A260 (1999)55.
  • 6E.G. Fan, Phys. Lett. A277 (2000) 212.
  • 7E.J. Parkes and B.R. Duffy, Phys. Lett. A229 (1997) 217.
  • 8L. Yang, J. Liu, and K. Yang, Phys. Lett. A278 (2001)267.
  • 9Z.T. Fu, S.K. Liu, S.D. Liu, and Q. Zhao, Phys. Lett.A290 (2001) 72.
  • 10S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett.A289 (2001) 89.

共引文献51

同被引文献4

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部