期刊文献+

有关p-幂零群的刻画(英文) 被引量:3

Some Characterizations of p-Nilpotency for Finite Groups
下载PDF
导出
摘要 设A是G的子群,X是G的非空子集.如果A在G中存在补T,使得A与T的每个Sylow子群都X-置换,则称A在G中X-s-半置换.研究X-s-半置换性质对群的结构的影响,并得到有关p-幂零群的一些刻画. Let A be a subgroup of group G,and X a non-empty subset of G.A is said to be X-s-semipermutable in G if A has a supplement T in G such that A is X-permutable with every Sylow subgroup of T.In this paper,the influences of X-s-semipermutability of some subgroups on the structure of finite groups are investigated.Some new criteria for group G to be p-nilpotent are obtained.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期66-69,共4页 Journal of Southwest University(Natural Science Edition)
基金 重庆自然科学基金资助项目(CSTC,2009BB8111)
关键词 有限群 X-s-半置换子群 P-幂零群 SYLOW子群 finite group X-s-semipermutable subgroup p-nilpotent group Sylow subgroup
  • 相关文献

参考文献10

  • 1HAO I.i-ping. The Influence of Xs Semipermutable Subgroups on the Structure of Finite Groups [J]. Southeast Asian Bull Math, 2009, 33: 421-432.
  • 2GUO Wen-bin. The Theory of Classes of Groups [M]. London: Science Press-Kluwer Academic Publishers, 2000.
  • 3G()RENSTEIN D. Finite Groups [M]. New York: Chelsea Publishing Company, 1980.
  • 4HUPPERT B. Endliche Gruppen I [M]. New York: Spring Verlag, 1967.
  • 5SCHMID P. Subgroups Permutable with All Sylow Subgroups [J]. J Algebra, 1998, 207: 285-293.
  • 6DOERK K, HAWKES T. Finite Soluble Groups[M]. New York: Walter de Gruyter, 1992.
  • 7ROBINS()N D J S. A Course in the Theory of Groups [M]. New York: Spring Verlag, 1982.
  • 8GUO Wen-bin, ZHU Xiao xing. Finite Groups with Given Indices of Normalizers of Primary Subgroups [J]. J Applied Algehra and Discrete Structures, 2003(1) : 135-140.
  • 9SHEMETKOV L A, SKIBA A N. On the Xφ-Hypereentre of Finite Groups [J]. J Algebra, 2009, 322: 2106-2117.
  • 10SKIBA A N. On Weakly s-Permutable Subgroups of Finite Groups [J]. J Algebra, 2007, 315: 192-209.

同被引文献21

  • 1张勤海,王丽芳.s-半置换子群对群构造的影响[J].数学学报(中文版),2005,48(1):81-88. 被引量:36
  • 2李洪兴,段钦治.基于幂群的超拓扑群[J].北京师范大学学报(自然科学版),1996,32(1):7-9. 被引量:9
  • 3李洪兴 汪培庄.幂群[J].应用数学,1988,1(1):1-4.
  • 4徐明耀.有限群导引(上册)[M].北京:科学出版社,1999..
  • 5郭文彬.群类论[M].北京:科学出版社,2000.57-72.
  • 6LI Hong-xing, DUAN Qin zhi, WANG Pei zhuang. Hypergroups[J]. Busefal, 1985(23) : 22-29.
  • 7韩胜伟,赵彬.Quantale上的理想余核(英文)[J].模糊系统与数学,2007,21(5):53-58. 被引量:7
  • 8Ore O. Contributions to the theory of groups[J]. Duke Math J, 1935, (5): 431-460.
  • 9Kegel 0 H. Sylow-Gruppen und subnormalteiler endlicher Gruppen[J]. Math Z, 1962, 78(1): 205-221.
  • 10Guo WShum K P, Skiba A N. X-permutable maximal subgroups of Sylow subgroups of finite groups[J]. Ukrain Matem J, 2006, 58 (10): 1471-1480.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部