期刊文献+

带有时变时滞和非线性耦合的复杂网络同步 被引量:8

Synchronization of nonlinear complex network with time-varying delays
下载PDF
导出
摘要 在最近几十年里,复杂网络逐渐成为人们研究的热点,它贯穿了科学和工程的大多数领域.另外,人们在讨论复杂网络时都是假设网络是固定不变的,但是事实上现实世界中很多网络都是增长的,同时还带有时滞,且大多数时滞都是随时间变化的.因此该文研究了耦合和节点都带有时变时滞,以及耦合函数为非线性的动态网络模型的同步问题.首先给出该模型,针对这个新模型,基于Lyapunov稳定性理论和线性矩阵不等式(LMI),论文得到了一些网络同步的充分条件.最后,数值结果表明了方法的有效性. Complex networks have attracted increasing attention from various fields of science and engineering today. Due to the finite speeds of transmission and spreading as well as traffic congestions, a signal or influence traveling through a complex network often was associated with time delays, and this is very common in biological and physical networks. And most of delays are changing with time. In this paper, we introduced complex dynamical network models with two kinds of time - varying delays in both nodes and coupling item of networks. And then we investigated their synchronization phenomena and criteria. Based on these new complex network models, we derived synchronization conditions in terms of the Lyapunov stability theory and linear matrix inequalities (LMI). We finally used the results of numerical simulations to illustrate the theoretical results.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第2期9-14,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(50474008) 兰州交通大学科研基金资助项目(DXS2010-019)
关键词 同步 时变时滞 非线性 耦合 复杂动态网络 节点 LYAPUNOV稳定性理论 线性矩阵不等式(LMI) synchronization time - varyiflg delays nonlinear coupling complex dynamical network nodes Lyapunov stability theory linear matrix inequality (LMI)
  • 相关文献

参考文献1

二级参考文献14

  • 1Zhou T and Wang B H 2005 Chin. Phys. Lett. 22 1072
  • 2Yang J Z and Zhang M 2005 Chin. Phys. Lett. 22 2183
  • 3Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329
  • 4Wang X. and Chen G 2002 Int. J. Bifur. Chaos 12 187
  • 5Wang X and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
  • 6Grade P M and Hu C K 2000 Phys. Rev. E 62 6409
  • 7Hong H, Choi M Y and Kim B J 2002 Phys. Rev. E 65 026139
  • 8Barahona M and Pecora L M 2002 Phys. Rev. Lett. C 89 054101
  • 9Cao J, Li P and Wang W 2006 Phys. Lett. A 353 318
  • 10Cao J and Lu J 2006 Chaos 013133

共引文献6

同被引文献79

  • 1王绍明,王安福.Liu混沌系统的单状态变量控制与同步[J].江西师范大学学报(自然科学版),2007,31(3):285-288. 被引量:5
  • 2LI1L, LI G,GUO Y . Generalized chaos synchronization ofa weighted complex network with different nodes [J]. Chinese Physis B,2010,19(8) :5071--5077.
  • 3J MEI, M JIANG, J WANG. Finite-time structure identifica tion and synchronization of drive response systems with uncer rain parameter[J]. Communication Nonlinear Scientific Numer ical Simulation, 2013(18) ..999--1015.
  • 4王磊,戴华平,孙优贤.基于复杂网络模型的同步分析及控制[J].控制与决策,2008,23(1):8-12. 被引量:6
  • 5LYU L,LI G,GUO L,et al.Generalized Chaos Synchronization of a Weighted Complex Network with Different Nodes[J].Chin Phys B,2010,19(8):080507-1.
  • 6MEI J,JIANG M H,WANG J.Finite-time Structure Identification and Synchronization of Drive-response Systems with Uncertain Parameter[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(4):999-1015.
  • 7PANDIT S A and AMRITKAR R E. Characterization and control of small-world networks[J]. Physical Review E, 1999, 60(2A): 1119-1122.
  • 8STROGATZ S H. Exploring complex networks[J]. Nature, 2001, 410: 268-276.
  • 9Jinhu and CHEN Guanrong. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 841-846.
  • 10LIANG Yi, WANG Xingyuan, and EUSTACE J. Adaptive synchronization in complex networks with non-delay and variable delay couplings via pining control[J]. Neurocomputing, 2014, 123: 292-298.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部