期刊文献+

一种解决电场积分方程低频失效的新方法 被引量:1

A new method for solving the low-frequency breakdown problem arising in EFIE
下载PDF
导出
摘要 应用基于RWG基函数的矩量法(MOM)求解电场积分方程(EFIE)会出现低频失效问题.提出一种基于三角元与RWG基函数关系的连接矩阵,利用该矩阵建立了电荷与电流之间的关系方程,通过该方程将传统的EFIE方法改进为增广矩量方程(A-EFIE)方法.该方法中矢量位与标量位被分离为单独的矩阵元素,避免了低频时传统EFIE中矢量位与标量位的不平衡.应用该文方法分别计算不同低频下理想导体球的双站雷达散射截面(RCS),结果与解析解吻合良好,表明该文方法可以有效地解决传统EFIE的低频失效问题. The electric field integral equation (EFIE) solved by the method of moments (MOM) using the Rao-Wihon-Glisson (RWG) basis functions suffers from the problem of low-frequency breakdown. In this paper, a kind of connection matrix based on the relationship between triangle meshes and RWG basis functions was presented to build an augmented electric field integral equation (A-EFIE) to modify the tradition EFIE through the equation of current continuity. In order to avoid the imbalance between the vector potential and the scalar potential in the EFIE, the potentials were separated to be individual matrix elements in the A-EFIE. This method was employed to calculate the bistatic radar cross section (RCS) of perfectly conducting sphere in different low-frequencies, and the results obtained agree with analytical solution. It was shown that the presented method could solve the problem of low-frequency breakdown in EFIE effectively.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第2期55-59,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60771034)
关键词 电场积分方程 增广矩量方程 低频 矩量法 electric field integral equation augmented electric field integral equation low-frequency method of moments
  • 相关文献

参考文献13

  • 1Rao S M,Wilton D R,Glisson A W.Electromagnetic scattering by surface of arbitrary shape[J].IEEE TransAntennas Propag,1982,30:409-418.
  • 2Harrington R F.Field computation by moment methods[M].NewYork:IEEE Press,1993,104-122.
  • 3Burton M,Kashyap S.A study of a recent moment-method algorithm that is accurate to very low frequencies[J].Appl Computational Electromagn Soc J,1995,10(3):58-68.
  • 4Qian Z G,Chew W C.A quantitative study on the low frequency breakdown of EFIE[J].Microwave and OpticalTechnology Letters,2008,50(5):1159-1162.
  • 5Mautz J R,Harrington R F.An E-field solution for a conducting surface small or comparable to the wavelength[J].IEEE Trans Antennas Propagat,1984,32(4):330-339.
  • 6Wu W,Glisson A W,Kajfez D.A study of two numerical solution processdures for the electric field integral equationat low frequency[J].Appl Computational Electromagn Soc J,1995,10(3):69-80.
  • 7Chen S Y,Chew W C,Song J M,et al.Analysis of low frequency scattering from penetrable scatterers[J].IEEETrans Geoscience and Remote sensing,2001,39(4):726-735.
  • 8Zhao J S,Chew W C.Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies[J].IEEE Trans Antennas Propagat,2000,48(10):1635-1645.
  • 9Zhang Y H,Cui T J,Chew W C,et al.Magnetic field integral equation at very low frequencies[J].IEEE TransAntennas Propagat,2003,51(8):1864-1871.
  • 10Vecchi G.Loop-star decomposition of basis functions in the discretization of the EFIE[J].IEEE Trans AntennasPropagat,1999,47:339-346.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部