期刊文献+

MLQP神经元网络的学习算法及其典型应用 被引量:1

Learning algorithm of multilayer quadratic perceptron and its typical apllications
下载PDF
导出
摘要 论述了一种多层二阶神经元MLQP(MultilayerQuadraticPerceptron)网络模型的结构和学习算法。这种模型综合了一般多层神经元网络和高阶神经元网络的特点,其结构简单,可调整权数量适中,学习速度快。文中以典型的模式分类和函数逼近问题为例,比较了这种网络和传统的一阶网络以及两种其他类型的二阶网络的学习速度,验证了MLQP快速收敛性。 This paper presents the structure and learning algortithm of multilayer Quadratic perceptron (MLQP) that combines advantages of multi layer perceptrons and high order neural networks.The features of MLQP are in its simple structure,powerful mapping ability,practical number of adjustable connection weights and fast learning speed.Its learning speeds are compared with the multi layer percepton and other two kinds of the second order neural networks on pattern classification and function approximation problems,and its fast convergence property is proved.
作者 董玲 白焰
机构地区 华北电力大学
出处 《现代电力》 2000年第1期21-26,共6页 Modern Electric Power
关键词 神经元网络 模式分类 学习算法 函数逼近 MLQP neural network learning pattern classification function approximation
  • 相关文献

参考文献1

共引文献3

同被引文献9

  • 1白焰.线性和二次型多层神经网络的学习速度[J].信息与控制,1994,23(5):308-310. 被引量:4
  • 2OSHERSON D N,WEINSTEIN S,STOLI M.Modular learning[A].SCHWARTZ E L.Computational Neuroscience[C].Cambridge,MA:MIT Press,1990:369-377.
  • 3JORDAN M I.A statistical approach to decision tree modeling[A].SIGART.Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory[C].New York:ACM Press,1994.
  • 4ANDERSON C W,HONG Z.Reinforcement learning with modular neural networks for control[A].Proceedings of NNACIP94[C].1994:90-93.
  • 5JORDAN M I,XU L.Convergence results for the EM approach to mixtures of experts architectures[J].Neural Networks,1995,8(9):1409-1431.
  • 6GILES C L,MAXWELLT T.Learning,invariance,and generalization in high-order neural networks[J].Applied Optics,1987,26(3):4972-4978.
  • 7BRIDLE J S.Probabilistic interpretation of feedforward classification network outputs,with relationships to statistical pattern recognition[A].Neuro-computing:Algorithms,Architectures and Applications[C].New York:Springer-Verlag,1990:227-236.
  • 8ZHANG J.Recurrent neural-fuzzy networks for nonlinear process modeling[J].IEEE Transaction on Neural Networks,1999,10(2):313-325.
  • 9杨戈,吕剑虹,刘志远.基于RBF神经网络的热工过程在线自适应建模算法研究[J].中国电机工程学报,2004,24(1):191-195. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部