期刊文献+

Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape 被引量:4

Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape
下载PDF
导出
摘要 The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f. The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期365-370,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 61006084 and 61076119) the Technical Corporation Innovation Foundation of Suzhou Industrial Park,China (Grant No. SG0962)
关键词 GAN Patterned sapphire substrate light emitting diode GaN, Patterned sapphire substrate, light emitting diode
  • 相关文献

参考文献23

  • 1Nakamura S, Senoh N, Iwasa N and Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797.
  • 2Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S and Yang H 2009 Chin. Phys. B 18 5350.
  • 3Linthicum K, Gehrke T, Thomson D, Carlson E, Rajagopal P, Smith T, Batchelor D and Davis R 1999 Appl. Phys. Lett. 75 196.
  • 4Peng W C and Wu Y S 2006 Appl. Phys. Lett. 88 18117.
  • 5He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101.
  • 6Huang H, Lin C H, Yu C C, Chiu C H, Lai C F, Kuo H C, Leung K M, Lu T C, Wang S C and Lee B D 2008 Nanotechnology 19 185301.
  • 7Wang T, Morishima Y, Naoi N and Sakai S 2000 J. Cryst. Growth 213 188.
  • 8Moon X T, Xie J, Liu C, Fu Y, Ni X, Biyikli N, Zhu K, Yun F, Morkoc H, Sagar A and Feenstra R M 2006 J. Cryst. Growth 291 301.
  • 9Tang T Y, Shiao Y, Lin C H, Shen K C, Huang J J, Ting S Y, Liu T C, Yang C C, Yao C L, Yeh J H, Hsu T C, Chen W C, Hsu H C and Chen L C 2009 J. Appl. Phys. 105 023501.
  • 10Lee K T, Lee Y C and Chang J Y 2008 J. Electrochem. Soc. 155 H638.

同被引文献14

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部