摘要
In this paper, improvements of resistive random access memory (RRAM) using doping technology are summarized and analyzed. Based on a Cu/ZrO2/Pt device, three doping technologies with Ti ions, Cu, and Cu nanocrystal, respectively, are adopted in the experiments. Compared to an undoped device, improvements focus on four points: eliminating the electroforming process, reducing operation voltage, improving electrical uniformity, and increasing device yield. In addition, thermal stability of the high resistance state and better retention are also achieved by the doping technology. We demonstrate that doping technology is an effective way of improving the electrical performance of RRAM.
In this paper, improvements of resistive random access memory (RRAM) using doping technology are summarized and analyzed. Based on a Cu/ZrO2/Pt device, three doping technologies with Ti ions, Cu, and Cu nanocrystal, respectively, are adopted in the experiments. Compared to an undoped device, improvements focus on four points: eliminating the electroforming process, reduc- ing operation voltage, improving electrical uniformity, and increasing device yield. In addition, thermal stability of the high re- sistance state and better retention are also achieved by the doping technology. We demonstrate that doping technology is an effec- tive way of improving the electrical performance of RRAM.
基金
supported by the National Basic Research Program of China (2010CB934200, 2008CB925002)
the National Natural Science Foundation of China (60825403, 50972160)
the National High-Tech Research & Development Program of China (2008AA031403, 2009AA03Z306)