期刊文献+

Improving the electrical performance of resistive switching memory using doping technology 被引量:6

Improving the electrical performance of resistive switching memory using doping technology
原文传递
导出
摘要 In this paper, improvements of resistive random access memory (RRAM) using doping technology are summarized and analyzed. Based on a Cu/ZrO2/Pt device, three doping technologies with Ti ions, Cu, and Cu nanocrystal, respectively, are adopted in the experiments. Compared to an undoped device, improvements focus on four points: eliminating the electroforming process, reducing operation voltage, improving electrical uniformity, and increasing device yield. In addition, thermal stability of the high resistance state and better retention are also achieved by the doping technology. We demonstrate that doping technology is an effective way of improving the electrical performance of RRAM. In this paper, improvements of resistive random access memory (RRAM) using doping technology are summarized and analyzed. Based on a Cu/ZrO2/Pt device, three doping technologies with Ti ions, Cu, and Cu nanocrystal, respectively, are adopted in the experiments. Compared to an undoped device, improvements focus on four points: eliminating the electroforming process, reduc- ing operation voltage, improving electrical uniformity, and increasing device yield. In addition, thermal stability of the high re- sistance state and better retention are also achieved by the doping technology. We demonstrate that doping technology is an effec- tive way of improving the electrical performance of RRAM.
出处 《Chinese Science Bulletin》 SCIE CAS 2012年第11期1235-1240,共6页
基金 supported by the National Basic Research Program of China (2010CB934200, 2008CB925002) the National Natural Science Foundation of China (60825403, 50972160) the National High-Tech Research & Development Program of China (2008AA031403, 2009AA03Z306)
关键词 掺杂技术 电气性能 电阻式 记忆体 兴奋剂 随机存取存储器 纳米晶体 电铸工艺 non-volatile memory, resistive random access memory (RRAM), doping technology
  • 相关文献

参考文献1

二级参考文献19

  • 1Worledge D C and Abraham D W 2003 Appl. Phys. Lett. 82 4522
  • 2Ma Li, Pyo S, Ouyang J, Xu Q and Yang Y 2003 Appl. Phys. Lett. 82 1419 .
  • 3Zhuang W W, Pan W, Ulrich B D et al 2002 IEDM Tech. Dig. 193
  • 4Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbe E F and Chan K 1996 Appl. Phys. Lett. 68 1377
  • 5Gibbons J F and Beadle W E 1964 Solid-State Electron. 7 785
  • 6Bruyere J C and Chakraverty B K 1970 Appl. Phys. Lett. 16 40
  • 7Hiatt W R and Hickmott T W 1965 Appl. Phys. Lett. 6 106
  • 8Chopra K L 1965 J. Appl. Phys. 36 184
  • 9Hickmott T W 1969 J. Vac. Sci. Technol. 6 828
  • 10Argall F 1968 Solid-State Electron. 11 535

共引文献1

同被引文献37

  • 1SHANG YuanFang,YE XiongYing,FENG JinYang.Theoretical analysis and simulation of thermoelastic deformation of bimorph microbeams[J].Science China(Technological Sciences),2013,56(7):1715-1722. 被引量:2
  • 2VALOV I, KOZICKI M N. Cation-based resistance change memory [J]. Phys: D, 2013, 46 (7): 07d005.
  • 3ZHANG H W, LIU L F, GAO B, et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach [ J]. Appl Phys Lett, 2011, 98 (4): 042105-042107.
  • 4GAO B, ZHANG H W, YU S, et al. Oxide-based RRAM: uniformity improvement using a new material- oriented methodology [ C ] //Proceedings of Symposium on VLSI Technology. Honolulu, Hi, USA, 2009: 30-31.
  • 5LIU Q, SUN J, LV H B, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM [J]. Advanced Materi- als, 2012, 24 (14): 1844-1849.
  • 6LIU Q, LONG S B, WANG W, et al. improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions [ J ]. IEEE Electron Device Lett, 2009, 30 (12): 1335-1337.
  • 7LIU M, LIU Q, LONG S B, et al. Formation and Annihilation of Cu Conductive Filament in the Nonpolar Resistive Switching Cu/ZrO : Cu/Pt ReRAM [ J ]. ISCAS, 2010 (1): 1-4.
  • 8LIU Q, LONG S B, LV H B, et al. Controllable growth of nanoscale conductive filaments in solid- electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode [ J ]. ACS Nano, 2010, 4 (10): 6162-6168. ber 2013.
  • 9LIU Q, LONG S B, WANG W, et al. Low power and highly uniform switching in ZrO2-based ReRAM with a Cu nanocrystal insertion layer [ J ]. IEEE Electron Device Lett, 2010, 31 (11): 1299-1301.
  • 10FANG Z, YU H Y, LI X, et al. HfOx/TiOx/HfOx/ TiOx multilayer-based forming-free RRAM devices with excellent uniformity [ J ]. IEEE Electron Device Lett, 2011, 32 (4): 566-568.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部