摘要
Based on an acoustic logging transmission network and the engineering pattern of a sliding wave in acoustic logging, analysis and calculations have been performed in a study of the effects of the electric-acoustic and acoustic-electric conversions of the transducers on the acoustic logging signal. The results show that acoustic-electric conversion through the transducer can cause not only a serious disturbance in the signal amplitude, but also an apparent transmission delay. For engineering applications, the amplitude variation and transmission delay must be accounted for in a practical analysis of the acoustic logging signal in rocks. The results also show that with enhanced understanding and proper justification, the error caused by the acoustic-electric conversion can be significantly reduced in evaluation of the cement bond quality of a cased well, and the accuracy of rock porosity calculated using the measured acoustic velocity can be increased.
Based on an acoustic logging transmission network and the engineering pattern of a sliding wave in acoustic logging, analysis and calculations have been performed in a study of the effects of the electric-acoustic and acoustic-electric conversions of the trans- ducers on the acoustic logging signal. The results show that acoustic-electric conversion through the transducer can cause not only a serious disturbance in the signal amplitude, but also an apparent transmission delay. For engineering applications, the amplitude variation and transmission delay must be accounted for in a practical analysis of the acoustic logging signal in rocks. The results also show that with enhanced understanding and proper justification, the error caused by the acoustic-electric conversion can be significantly reduced in evaluation of the cement bond quality of a cased well, and the accuracy of rock porosity calculated using the measured acoustic velocity can be increased.
基金
supported by the National Natural Science Foundation of China (40974078)