期刊文献+

转化生长因子β1下调间充质干细胞表达CXCR4 被引量:2

Transforming growth factor β1 down-regulates CXCR4 expression of mesenchymal stem cells
下载PDF
导出
摘要 目的在体外培养的情况下,采用转化生长因子β1(TGF-β1)与间充质干细胞(MSCs)共培养的方法,探索转化生长因子β1对间充质干细胞趋化受体CXCR4表达的影响。方法不同浓度的转化生长因子β1刺激间充质干细胞,然后在不同的作用时间点,用流式细胞术检测间充质干细胞胞内和胞外表达CXCR4的变化。结果 TGF-β1在不同的作用时间和不同的浓度情况下,对MSCs表达CXCR4有不同的影响。在短时间内(3h),不同浓度的TGF-β1都能明显地下调CXCR4的表达;延长刺激时间至24h,不同浓度的TGF-β1对CXCR4的表达影响甚小;如果再继续培养到48h和72h,不同浓度的TGF-β1对CXCR4的表达又出现不同的影响。结论 TGF-β1能快速下调CXCR4的表达,减弱了MSCs的趋化归巢能力,但是MSCs表达CXCR4又可能存在一个负反馈机制。 Objective To investigate the effects of transforming growth factor β1 on CXCR4 expression by mesenchymal stem cells in vitro. Methods CXCR4 expressed from mesenchymal stem cells was detected by flow cytometry. Mesenchymal stem cells were stimulated by different concentrations of transforming growth factor β 1. At different time points, mesenchymal stem cells were collected, and then flow cytometry detected CXCR4 expression of mesenchymal stem cells. Results Different concentration of TGF- β 1 could down-regulate CXCR4 expression by MSCs rapidly in a short time. However, after stimulation of TGF- β 1 on MSCs for 24 hours, 48 hours or 72 hours, CXCR4 expression barely changed. Conclusion TGF-β 1 down-regulates CXCR4 expression by MSCs rapidly. Reduction of CXCR4 in kytoplasm stimulates CXCR4 expression, suggesting that there is a feedback loop in MSCs regulating CXCR4 expression.
出处 《分子诊断与治疗杂志》 2012年第2期79-83,共5页 Journal of Molecular Diagnostics and Therapy
基金 国家自然科学基金(30872618)
关键词 转化生长因子Β1 间充质干细胞 CXCR4 Transforming growth factor β 1 Mesenchymal stem cells CXCR4
  • 相关文献

参考文献18

  • 1Baron F, Lechanteur C, Willems E, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft- versus-host disease (GVHD) without abrogating graft- versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning[J] Biol Blood Marrow Transplant, 2010, 16(6): 838-847.
  • 2Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft- versus-host disease: a phase II study[J]. Lancet, 2008, 371(9624): 1579-1586.
  • 3Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke[J]. Transplantation, 2009, 87(3): 350-359.
  • 4Wang J S, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages[J]. J Thorac Cardiovasc Surg, 2000, 120(5): 999-1005.
  • 5Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nat Immunol, 2005, 6(10): 1038-1046.
  • 6Wynn R F, Hart C A, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood, 2004, 104(9): 2643-2645.
  • 7Kucia M, Ratajczak J, Reca R, et al. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury[J]. Blood Cells Mol Dis, 2004, 32(1): 52-57.
  • 8Togel F, Isaac J, Hu Z, et al. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury[J]. Kidney Int, 2005, 67(5): 1772-1784.
  • 9Ji J F, He B P, Dheen S T, et al. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brainafter hypoglossal nerve injury[J]. Stem Cells, 2004, 22(3): 415 -427.
  • 10Ceradini D J, Kulkarni A R, Callaghan M J, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-I[J]. Nat Med, 2004, 10(8): 858-864.

同被引文献16

  • 1Giordano A, Galderisi U, Marino I R. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells[J]. J Cell Physiol, 2007, 211(1): 27-35.
  • 2Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
  • 3Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol, 2003, 57(1): 11-20.
  • 4Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft- versus-host disease: a phase II study[J]. Lancet, 2008, 371(9624): 1579-1586.
  • 5Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke[J]. Transplantation, 2009, 87(3): 350-359.
  • 6Murphy J M, Fink D J, Hunziker E B, et al. Stem cell therapy in a caprine model of osteoarthritis[J]. Arthritis Rheum, 2003, 48(12): 3464-3474.
  • 7Jin J, Zhao Y, Tan X, et al. An improved transplantation strategyfor mouse mesenchymal stem cells in an acute myocardial infarction model[J]. PLoS One, 2011, 6(6):e 21005.
  • 8Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nat Immunol, 2005, 6(10): 1038-1046.
  • 9Kucia M, Ratajczak J, Reca R, et al. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury[J]. Blood Cells Mol Dis, 2004, 32(1): 52-57.
  • 10Yu X, Chen D, Zhang Y, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke[J]. J Neurol Sci, 2012, 316(1-2): 141-149.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部