期刊文献+

一种基于动态遗传算法的聚类新方法 被引量:27

A Novel Clustering Method Based on Dynamic Genetic Algorithm
下载PDF
导出
摘要 如何确定聚类数目一直是聚类分析中的难点问题.为此本文提出了一种基于动态遗传算法的聚类新方法,该方法采用最大属性值范围划分法克服划分聚类算法对初始值的敏感性,并运用两阶段的动态选择和变异策略,使选择概率和变异率跟随种群的聚类数目一致性变化,先进行不同聚类数目的并行搜索,再获取最优的聚类中心.七组数据聚类实验证明该方法能够实现数据集最佳划分的自动全局搜索,同时搜索到最佳聚类数目和最佳聚类中心. How to determine the number of clusters is always a difficult problem in data cluster analysis. Therefore, a novel dynamic genetic clustering algorithm (DGCA) is proposed in this paper. The DGCA adopts a maximum attribute range partition method to overcome the sensitiveness to initial values of cluster centers for clustering algorithms. Furthermore, the two-stage dynamic selection and mutation operations are used in the DGCA to make selection probability and mutation probability vary with the consistency of the number of clusters in the population. Firstly the parallel search in different numbers of clusters is carried out. Then the optimal search for the best cluster centers is conducted. Numerical experiments on seven data sets show that the proposed DGCA can realize the global search for the best partition and find the optimal values for both the number of clusters and the cluster centers.
作者 何宏 谭永红
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第2期254-259,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60971004 No.61171088) 上海市自然科学基金(No.10ZR1422400) 上海教委科研创新重点项目(No.09ZZ141) 上海师范大学重点学科项目(No.DZL811) 上海师范大学原创与前瞻性预研项目(No.DYL201006)
关键词 聚类分析 遗传算法 动态选择 变异 cluster analysis genetic algorithm dynamic selection mutation
  • 相关文献

参考文献18

  • 1Shiozaki Ryuji,Andersen Arnfinn G,Hayakawa Taka-shi,et al.Partial oxidation of methane over a Ni/BaTiO3 catalyst prepared by solid phase crystallization[J].J Chem Soc, Faraday Trans, 1997, 93(17): 3235-3242.
  • 2A D Gordon.Classification[M].Chapman & HalL/CRC,Boca Raton,FL,2 Edition,1999.163-175.
  • 3Lin Yu Tseng,Shiueng Bien Yang.A genetic clustering algorithm for data with non-spherical-shape clusters[J].Pattern Recognition,2000,33:1251-1259.
  • 4Othman R M,Deris S,Illias R M,et al.Automatic clustering of gene ontology by genetic algorithm[J].International Journal of Information Technology,2006,3(1):37-46.
  • 5Daniels J,et al.Polaronic conduction in n-type BaTiO3 doped with La2O3 and Gd2O3[J].Philips Res Repts,1976,31:489.
  • 6Maya D Glinchuk, Lgor P Bykov, Sergei M Kornie-nko,et al.Influence of impurities of the properties of rare-earth-doped barium-titanate ceramice[J].J Mater Chem,2000,10:941-947.
  • 7钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24
  • 8Sung-Hae Jun.A hybrid genetic algorithm and new criterion for determining the number of clusters[J].International Journal of Soft Computing,2006,1 (4):313-318.
  • 9Swagatam Das,Archana Chowdhury,Ajith Abraham.A bacterial evolutionary algorithm for automatic data clustering[A].Evolutionary Computation,CEC' 09 IEEE Congress on[C].IEEE,2009.2403-2410.
  • 10N R Pal,J C Bezdek.On cluster validity for the fuzzy cmeans model[J].IEEE Transactions Fuzzy System,1995,3(3):370-379.

二级参考文献9

  • 1Jawei Han,Micheline Kamber.Data Mining:Concepts and Techniques[M].San Fransisco:Morgan Kaufmann,2000.
  • 2Karkkainen Franti.Dynamic local search for clustering with unknown number of clusters[A].IEEE 16th International Conference on Pattern Recognition[C].Quebec Canada:IEEE,2002(2).240-243.
  • 3Hong-bing XU.Fuzzy tabu search method for the clustering problem[A].IEEE Proceeding of the first International Conference on Machine Learning and Cyberneteics[C].Beijing:IEEE,2002(5).876-880.
  • 4Hall L O Ozyurt.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation,1999,7(3):103-112.
  • 5Krovi R.Genetic algorithms for clustering:a preliminary investigation.System Sciences[A].IEEE Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences[C].Hawaii:IEEE,1992(4).540-544.
  • 6Timmis.Artificial immune system:an novel data analysis technique inspired by immune network theory[D].Wales:Wales university,2001.
  • 7Leandro Nunes de Castro.An evolutionary immune network for data clustering[A].Proc of the IEEE SBRN (Brazilian Symposium on Artificial Neural Networks)[C].Brazilian:IEEE,2000.84-89.
  • 8Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man and Cybernetics,1998,28(Part B,Issue:3):301-315.
  • 9行小帅,潘进,焦李成.基于免疫规划的K-means聚类算法[J].计算机学报,2003,26(5):605-610. 被引量:81

共引文献24

同被引文献247

引证文献27

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部