期刊文献+

噪声环境下多模态函数优化的遗传算法 被引量:8

Genetic Algorithm for Multi-Modal Function Optimization in Noisy Environments
下载PDF
导出
摘要 针对噪声环境下多模函数的优化,本文理论上分析了噪声对多模函数优化的全局收敛性和收敛精度的影响,并通过全局区域搜索率和全局区域收敛精度分析噪声对算法的影响程度.实验结果和分析表明,增加多模函数寻优难度和噪声强度,遗传算法的全局区域搜索率都在下降,全局区域收敛精度总体变差;重采样的方法能够有效提高算法的全局区域搜索率,总体改善算法的全局区域收敛精度;确定性排挤遗传算法(Deterministic Crowding Genetic A-lgorithm,DCGA)和多种群遗传算法(Mult-i Population Genetic Algorithm,MPGA)的全局区域搜索率和全局区域收敛精度要优于杰出保留遗传算法(Elist Genetic Algorithm,EGA). An in-depth study was carded out on the genetic algorithm for MFO(Multi-modal function optimization) in noise environment. The effect of noise on MFO was theoretically analyzed. The probability of searching global area and the precision of global convergence were proposed to analyze the global convergence of genetic algorithm for MFO. It was fotmd that the complexity of Multi-modal function and the strength of noise have influence on the performance of genetic algorithm for MFO. The result shows resampling method could iower the effect of noise,and the performance of MPGA and DCGA was better than that of EGA.
作者 李军华 黎明
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第2期327-330,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60963002) 江西省自然科学基金(No.2009GZS0090 No.2010GZS0169)
关键词 遗传算法 多模函数优化 噪声环境 genetic algorithm Multi-modal function optim zafion noise environment
  • 相关文献

参考文献9

二级参考文献30

  • 1刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 2周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 3林琳,王树勋.基于自适应小生境混合遗传算法的说话人识别[J].电子学报,2007,35(1):8-12. 被引量:9
  • 4[1]Richard K Belew, Michael D Vose. Foundations of Genetic Algorithms 4. San Francisco, Calif: Morgan Kaufmann Publishers, Inc., 1997
  • 5[2]Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass: The MIT Press, 1996
  • 6[3]De Jong K A. Genetic algorithms: A 25 year perspective. In: Proceedings of the Fifth International Conference on Genetic Algorithms,Los Altos,CA: Morgan Kaufmann Publishers, 1993
  • 7[4]Mahfoud S W. Crowding and pre-selection revisited. In: Parallel Problem Solving from Nature, Manner R, Manderick B (eds.). Berlin: Springer, 1992. 67~76
  • 8[5]Mengshoel O J, Goldberg D E. Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference 1999 (GECCO-99),Banzhaf W et al.(eds.). San Fransisco, CA: Morgan Kaufmann, 1999. 173~179
  • 9[6]Goldberg D E, Deb K, Horn J. Massive multi-modality, deception, and genetic algorithms. In: Manner R, Manderick B (eds.), Parallel Problem Solving from Nature, Berlin: Springer, 1992. (2):37~46
  • 10[7]Beasley D, Bull D R, Martin R R. A sequential niche technique fo r multi-modal function optimization. Evolutionary Computation, 1993,1(2):101~125

共引文献53

同被引文献88

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部