期刊文献+

基于简化SIFT算法的无人机影像重叠度分析 被引量:11

Overlapping degree analysis of images from an unmanned aerial vehicle based on a reduced scale-invariant feature transform(SIFT) algorithm
下载PDF
导出
摘要 利用无人机进行低空摄影获取地面高分辨率影像,具有成本低、方便、快捷等优点,但由于无人机飞行姿态不稳定,会导致影像自动匹配效率及准确程度降低.SIFT算子具有良好的尺度、旋转、光照等不变特性,但传统SIFT算法复杂度较高,处理影像时间较长,使数据处理工作效率降低.介绍了一种简化的SIFT算法,并与原SIFT算法做出了对比.说明了影像重叠度分析的主要步骤,将简化的SIFT算法RANSAC算法相结合应用到序列影像重叠度分析中,通过实验证明了可行性. Compared with traditional images, high-resolution images obtained by unmanned aerial vehicles (UAV) are superior in many aspects such as low cost, rapidness and convenience. However, the attitude of unmanned aer- ial vehicles cannot be determined accurately, which leads to a decrease in accuracy and efficiency of automaticmatching. There are several ascendant characteristics of a SIFT operator such as invariance to scale, rotation, and lightness, and these characteristics are very useful in increasing the matching accuracy of UAV images; however,the traditional SIFT algorithm is complex and requires a long time for image processing. In this paper, a reduced SIFT method was described and some comparisons were made. The overlap analysis of UAV images were processedbased on a reduced SIFT and the random sample consensus (RANSAC) algorithm, and the steps of overlap analysis were described. Finally, satisfactory results were obtained.
作者 邢诚
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第2期221-225,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(10772055)
关键词 无人机影像 SIFT 特征匹配 重叠度分析 UAV images SIFT feature matching overlapping degree analysis
  • 相关文献

参考文献8

  • 1孙家炳.遥感原理与应用[M].武汉:武汉大学出版社,2003.
  • 2LOWE D G.Object recognition from local scale-invariantfeatures[C]//International Conference on Computer Vi-sion.Corfu,1999:1150-1157.
  • 3KOENDERINK J J.The structure of images[J].BiologicalCybernetics,1984,50:363-396.
  • 4LINDEBERG T.Detecting salient blob-like image structuresand their scales with a scale-space primal sketch:a methodfor focus-of-attention[J].International Journal of ComputerVision,1993,11(3):283-318.
  • 5BROWN M A.Multi-image matching using invariant fea-tures[D].Vancouver:The University of British Columbia,2005:16-17.
  • 6FISHCHLER M A.Random sample consensus:a paradigmfor model fitting with application to image analysis and auto-mated cartography[J].Communication Association Ma-chine,1981,24(6):381-395.
  • 7李德仁.摄影测量与遥感概论[M].北京:测绘出版社,2003.
  • 8王佩军,徐亚明.摄影测量学[M].武汉:武汉大学出版社,2007.

共引文献31

同被引文献99

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部