期刊文献+

内燃机配气机构系统刚度的虚拟设计 被引量:2

Virtual design of rigidity for valve train system in internal combustion engine
下载PDF
导出
摘要 为了确定内燃机配气机构两质量简化模型中配气机构系统刚度这一关键参数,对现有WD615机型的配气机构进行了三维建模,应用不同结构单元划分方式进行了有限元计算,在此基础上求解了多种型号配气机构系统刚度。在标定试验系统精度的基础上,采用激光传感技术对仿真结果进行了试验验证。研究结果表明:应用有限元方法计算配气机构刚度较为准确,计算结果和试验结果误差在5%之内。以刚度统计结果为基础,得出随着气门质量的增加配气机构系统刚度近似成二次多项式增加,气门系统自振频率位于30000~50000次/min。该研究为开发新型配气机构提供了依据。 In order to define the stiffness of the two-mass valve train model which is the key parameter of the valve train system, the finite element calculation was carried out by using different methods of compartmentalizing component based on the creation of the 3D models of every component of the valve train of WD615. The stiffness values of various valve train systems were calculated by using the simulation method mentioned above. After the calibration of the test system, the simulation results were tested by using the technique of laser measurement. The simulation and test result showed the reasonability and accuracy of the FEM method and the measurement error was limited to 5%. It coule be concluded that there was a quadratic polynomial increase between the valve train stiffness and the quality of the valve while the natural frequency of valve system waved between 30 000 to 50 000 times/min based on the statistical results. This research could provide the theory basis of developing the new valve train system.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第6期44-49,I0004,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 浙江省自然科学基金(Y1111044)
关键词 有限元法 刚度 内燃机 配气机构 finite element method, stiffness, internal combustion engines, valve train
  • 相关文献

参考文献15

  • 1Teodorescu M, Taraza D, Henein N A. Experimental analysis of dynamics and friction in valve train systems[C]// SAE 2002 World Congress and Exhibition, Detroit, MI, USA, 2002-01-0484: 1027- 1037.
  • 2Poling B E, Prausnitz J M, O'Connell J P. The properties of gases and liquids [M]. 5th ed. New York: McGraw-Hill, 2001.
  • 3Kaye G W C, Laby T H. Kaye and Laby's tables of physical and chemical constants [M]. Harlow: Longman, 1995.
  • 4Dean J A. Lange's handbook of chemistry [Z]. 15th ed. New York: McGraw-Hill, 1999.
  • 5Kobe K A, Lynn R E. The critical properties of elements and compounds [J]. Chemical Reviews, 1953, 52(1): 117-236.
  • 6Cardoso E, Bruno A. Recherches experimentales sur quelques proprietes thermiques des gaz-elements critiques et tensions de vapeur de l'oxyde de methyle [J]. J Chim Phys, 1923, 20(1):347-351.
  • 7Kennedy R M, Sagenkahn M, Aston J G. The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether, the density of gaseous dimethyl ether [J]. Journal of the American Chemical Society, 1941, 63(8): 2 267-2 272.
  • 8Noles J R, Zollweg J A. Vapor-liquid equilibrium for chlorodifluoromethane+dimethyl ether from 283 to 395 K at pressures to 5.0 MPa [J]. Journal of Chemical and Engineering Data, 1992, 37(3): 306-310.
  • 9刘忠民,俞小莉,沈瑜铭.配气机构动力学模型的比较研究[J].浙江大学学报(工学版),2005,39(12):1941-1945. 被引量:13
  • 10Bobbo S, Fedele L, Camporese R, et al. Isothermal vapor-liquid equilibrium for the three binary systems 1,1,1,2,3,3-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether [J]. Fluids Phase Equilibria, 2000,

二级参考文献6

  • 1李惠珍,袁兆成,乐俊秉,刘佳才.配气凸轮设计的进展[J].内燃机工程,1989,10(1):32-37. 被引量:10
  • 2龙连春,刘仁桓,彭健.摇臂参数设计方法[J].内燃机工程,1996,17(4):39-42. 被引量:2
  • 3张效工 陈法成.内燃机气门落座特性的研究[J].内燃机工程,1980,1(2):23-35.
  • 4张立梅 张克刚.配气机构振动的研究[J].内燃机工程,1986,7(3):68-76.
  • 5FRIEDRICH W S, JURGEN B, RAINER L. Marked progress in both technique and handling of valve train and valve train drive calculation on commercial platforms [J]. Society of Automotive Engine, Engines, 1999:843 - 850.
  • 6李建锋,俞小莉,沈瑜铭,刘忠民.气门动态信号处理方法研究[J].内燃机工程,2004,25(1):35-37. 被引量:6

共引文献16

同被引文献14

  • 1刘忠民,俞小莉,沈瑜铭.配气机构动力学模型的比较研究[J].浙江大学学报(工学版),2005,39(12):1941-1945. 被引量:13
  • 2Marine Environment Protection Committee. Report of the marine environment protection committee on its fifty-seven session[R]. IMO, 2008.
  • 3Millo F, Torino P, Gianoglio P, etal. Comhimng dual stage turbocharging with extreme Miller timings to achieve NO~ emissions reductions in marine diesel engine[C]//Bergen.. CIMAC Paper No. 210,2010.
  • 4Pierre J, Henry X, David W. VTG turbocharging-a valuable concept for traction application[C]//Shanghai: CIMAC Paper No. 116,2013.
  • 5Tinschmann G, Thum D. Sailing towards IMO Tier III exhaust aftertreatment vesus engine-internal technologic5 for medium speed diesel engings [C]//Bergen.. CIMAC Paper No. 274,2010.
  • 6Ludu A. Large high speed diesels,quo vadis? superior system integration, the answer to the challenge of the 2012-2020 emission limits[C]//Bergen :CIMAC Paper No. 313,2010.
  • 7Wirth K. Emissions reduction opportunities on MaK engines [C]//CIMAC Paper No. 286,2010, Bergen.
  • 8Zhang W Z, Ping T, Franz Maassen, et al. Combustion development of new medium-speed marine diesel engine[C]// Shanghai:CIMAC Paper No. 192,2013.
  • 9Tinschmann G, Holand P, Benetschik H, et al. Potential of two-stage turbocharging on MAN diesel's 32/44CR[J]. MTZ, 2008,69(10) : 14-21.
  • 10Mehrgou M, Hadley N, Oiler V D. Optimization of a heavy duty diesel engine cam profiles to eliminate the contact loss using multi-body dynamic model [ C ]//SAE 2009-01- 1195,2009.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部