期刊文献+

基于波谱分析技术的遥感作物分类方法 被引量:33

Crop classification by remote sensing based on spectral analysis
下载PDF
导出
摘要 为获取东北三省作物类型分布信息,精确地进行粮食估产,该文以250mMODIS时间序列NDVI数据为主要数据源,以东北三省主要粮食作物水稻、玉米、大豆、小麦为研究对象,利用波谱分析方法对东北三省作物类型的空间分布进行研究。研究结果表明,大豆的遥感反演面积和统计面积的相关性最好(R2=0.770),其次是玉米(R2=0.710),水稻(R2=0.686)。该文使用的作物分类方法适用于试验条件有限,实测数据较难获得并以遥感数据为主要数据源且研究区域较大、作物类型单一、种植面积广的情况。 In order to acquire the information of crop classification to estimate crop yield accurately in Northeast China,four kinds of crops(rice,wheat,maize,soybean) were taken as study objects and 250 m MODIS time-series NDVI data was used to analyze the crop distribution patterns based on spectral analysis method.The area derived from the crop classification result was compared with the planted area from statistical data,and the results showed that the correlation of soybeans was better than maize and rice,with R2=0.770,0.710,0.686 respectively.The crop classification method used in the study is suitable for the situation with limited experimental conditions,difficult for obtaining measurements(remote sensing data as the main data source) and large planting area with single crop.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第5期154-160,I0004,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家科技支撑计划课题(No.2011BAD32B01) 公益性行业(气象)科研专项(No.GYHY201106027)
关键词 作物 遥感 波谱分析 分类 MODIS NDVI 东北三省 crops remote sensing spectral analysis classification MODIS NDVI Northeast China
  • 相关文献

参考文献16

  • 1Zhang Mingwei,Zhou Qingbo,Chen Zhongxin,et al.Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data[J].International Journal of Applied Earth Observation and Geoinformation,2008,10:476-485.
  • 2Brian D Wardlow,Stephen L Egbert.Large-area crop mapping using time-series MODIS250m NDVI data:An assessment for the U.S.Central Great Plains[J].Remote Sensing of Environment.2008,112:1096-1116.
  • 3Doraiswamy P C,Sinclair T R,Hollinger S,et al.Application of MODIS derived parameters for regional crop yield assessment[J].Remote Sensing of Environment,2005,97:192-202.
  • 4Mutlu Ozdogan.The spatial distribution of crop types from MODIS data:Temporal unmixing using independent component analysis[J].Remote Sensing of Environment,2010,114:1190-1204.
  • 5Turner II B L,Skole D,Sanderson S,et al.Land-Use and Land-Cover Change Science/Research Plan[R].IGBP Report No.35and HDP Report No.7,1995.
  • 6Xiangming Xiao,T Stephen Bolesa,Jiyuan Liu,et al.Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J].Remote Sensing of Environment,2005,95:480-492.
  • 7Wang Q,Tenhunen J,Granier A,et al.Long-term variations in leaf area index and light extinction in a Fagus sylvatica stand as estimated from global radiation profiles[J].Theoretical and Applied Climatology,2004,79:225-238.
  • 8Sellers P J.Canopy reflectance photosynthesis and transpiration[J].International Journal of Remote Sensing,1985,6:1335-1372.
  • 9Brian D Wardlow,Stephen L Egbert,Jude H Kastens Analysis of time-series MODIS250m vegetation index data for crop classification in the U.S.Central Great Plains[J].Remote Sensing of Environment,2007,108:290-310.
  • 10John C Mars,Lawrence C Rowan.Spectral assessment of new ASTER SWIR surface reflectance data products forspectroscopic mapping of rocks and minerals[J].Remote Sensing of Environment,2010,114:2011-2025.

二级参考文献22

共引文献77

同被引文献498

引证文献33

二级引证文献527

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部