期刊文献+

饱和正交表列效应的线性约束条件检验

Test of Linear Constraint Equation in Column Effect of Saturated Orthogonal Arrays
下载PDF
导出
摘要 采用矩阵像分解技术和零效应搜索法来讨论饱和模型的数据分析,对零成分导出了相应的线性约束条件.通过饱和正交表列效应的线性约束条件的问题进行适当变换,使其等同于一个子成分的显著性检验问题,再利用零成分搜索法判断其是否为零成分,可以完满地解决该问题. Data analysis in orthogonal saturated model is discussed by doing decomposition to matrix images and Procedure of Searching Zero-Decomposition. And the linear constraint equation for some zero-decomposition is de- duced. By transforming the test problem of general linear constraint equation to significant test of a decomposition of colunm effcet and applying Procedure of Searching Zero-Decomposition, this problem is perfectly solved at last.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第1期71-74,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 教育部高等学校博士学科点专项基金(44K55050)资助项目
关键词 正交表 约束条件 投影矩阵 矩阵像 饱和模型 orthogonal arrays constraint equation projection' matrices matrix images saturated model
  • 相关文献

参考文献6

  • 1潘长缘,陈雪平,张应山.正交表列效应的约束条件检验[J].山西大学学报(自然科学版),2008,31(3):380-384. 被引量:7
  • 2马海南,潘长缘,张应山.不饱和正交表列效应的约束条件检验[J].数学的实践与认识,2010,40(20):96-101. 被引量:1
  • 3Zhang Yingshan,Lu Yiqiang,Pang Shanqi.Orthogonal arrays obtained by orthogonal decomposition of projection matrices[J].Statistica Sinica,1999,9(2):595-604.
  • 4游晓锋,丁树良,刘红云.缺失数据的估计方法及应用[J].江西师范大学学报(自然科学版),2011,35(3):325-330. 被引量:7
  • 5Wang Xiaodi,Tang Yincai,Chen Xueping,et al.Design of experiment in global sensitivity analysis based on ANOVA high-dimension model representation[J].Communicasions in Statistics-Simulation and Computation,2010,39(6):1183-1195.
  • 6Wang Xiaodi,Tang Yincai,Zhang Yingshan.Orthogonal arrays for the estimation of global sensitivity indices based on ANOVA high-dimension model representation[J].Communicasions in Statistics-Simulation and Computation,2011,40(9):1324-1341.

二级参考文献15

  • 1张晓琴.正交饱和设计的统计分析[J].应用概率统计,2007,23(1):91-101. 被引量:3
  • 2Zhang Y S, Lu Y Q and Pang S Q. Orthogonal arrays obtained by orthogonal decomposition of projection matrices[J]. Statistica Siniea, 1999, 9: 595-604.
  • 3Lord F M. Estimation of latent ability and item parameters when there are omitted responses [J]. Psychometrika, 1974, 39: 247-264.
  • 4Mislevy R J, Wu P. Missing response and IRT ability estima- tion: omits, ehoice, time limits, and adaptive testing [J]. Princeton NJ: Educational Testing Service, 1996.
  • 5De Ayala R J, Plake B S, Impara J C. The impact of omittod responses on the accuracy of ability estimation in item re- sponse theory [J]. Journal of Educational Measurement, 2001, 38(3): 213-234.
  • 6Lord F M. Application of item response theory to practical testing problems [M]. HiUsdale: Lawrence Erlbaum Associ- ates.
  • 7Wainer H, Thissen D J. On examinee choice in educational testing [J]. Review of Educational Rvsearch, 1994, 64: 159-195.
  • 8Little R J A, Rubin D B. Statistical analysis with missing data [M]. New York: John Wiley & Sons, 2002.
  • 9Graham J W, Cumsille P E, Elek-Fisk E. Methods for han- dling missing data. [M]. New York: John Wiley & Sons, 2003: 87-114.
  • 10Wayman J C. Multiple imputation for missing data: what is it and how can I use it? [EB/OL]. [2010-04-12]. http://www. csis.j hu.cdu/contact/staff/j wayman_pub/wayman_multimp_ar ca2003 .odf.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部