期刊文献+

500kV输电杆塔结构抗风极限承载力试验研究 被引量:19

Experimental Study on Wind-resistant Ultimate Load-carrying Capacity of 500 kV Transmission Tower
下载PDF
导出
摘要 为研究强风荷载作用下高压输电塔结构的极限抗风承载力和破坏机理,以风灾中遭到破坏的代表性500kV输电塔为原型,设计制作了典型塔段的缩尺结构模型,进行了等效风荷载作用下的静力加载破坏全过程试验。试验结果表明,结构破坏源于主材的弯扭失稳;在加载全过程中,交叉斜撑平面外变形呈现出不断增大的趋势。针对上述特征,基于原有模型,在其交叉斜撑节点位置增设了横隔面,并按原有加载规则进行了全过程加载,以考察这种改进之后结构体系的受力性能。研究发现,结构的破坏依然由主材屈曲引起,但其失稳模态由弯扭失稳趋向弯曲失稳;同时,交叉斜撑的面外变形得到了有效控制。对比结果显示:结构抗风极限承载力提高幅度达到22.1%。由于横隔面的存在,主材角钢失稳模态中扭转效应对临界承载力的不利影响被大幅降低,交叉斜撑面外变形对结构整体稳定的不利效应被显著抑制,结构的整体受力模式更趋合理,从而表明设置横隔面后的结构受力性能得到全面改善,其极限承载力和抗风性能得到了显著提升。 In order to study wind-resistant load-carrying capacity and failure mechanism of high-voltage transmission tower under severe wind storms,one subassemblage of a typical 500 kV transmission tower which was designed following the current code and suffered severe damage during wind storms was fabricated and statically tested under equivalent wind load.The test results showed that failure of structure was caused by torsional-flexural buckling of the main member.The out-of-plane deformation of the cross-bracings exhibited continuously increase.In view of these characteristics,one corresponding subassemblage which was added with horizontal diaphragm at the joints of cross bracings was tested under the same loading procedure.It was found that,for the improved structural system,instability of main member remained the primary failure pattern.But the buckling mode was transited from torsional-flexural buckling to flexural buckling.Meanwhile,the out-of-plane deformation in the joints of cross-bracings was reduced significantly.By comparison,it can be obtained that the ultimate wind-resistant load-carrying capacity is increased by 22.1%.Owing to the diaphragm,the unfavorable influence of torsion in the main member as well as the out-of-plane deformation of the cross bracings is inhibited.The mechanical performance of overall system is improved substantially.And it can be concluded that the structure with diaphragm behaves more brilliantly because its load carrying capacity and wind resistant performance are increased significantly.
出处 《高电压技术》 EI CAS CSCD 北大核心 2012年第3期712-719,共8页 High Voltage Engineering
基金 国家自然科学基金(50508026 50778135) 教育部霍英东教育基金会资助课题(114021) 国家电网公司科技项目(2008-536)~~
关键词 输电塔 抗风性能 横隔面 静力试验 破坏模式 极限承载力 transmission tower wind-resistant performance diaphragm static test failure pattern load-carrying capacity
  • 相关文献

参考文献22

  • 1Xie Qiang,Zhu Ruiyuan.Damage to electric power grid infrastruc-ture caused by natural disasters in China[J].IEEE Power and Ener-gy Magazine,2011,9(2):28-36.
  • 2谢强,张勇,李杰.华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J].电网技术,2006,30(10):59-63. 被引量:114
  • 3谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131. 被引量:200
  • 4日本电力中央研究所.输电设备的风荷载以及风响应评估技术[R].东京:日本电力中央研究所,2003.
  • 5Battista R C,Rodrigues R S,Pfeil M S.Dynamic behavior and sta-bility of transmission line towers under wind forces[J].Journal ofWind Engineering and Industrial Aerodynamics,2003,91(8):1051-1067.
  • 6Yasui H,Marukawa H,Mommura Y,et al.Analytical study onwind-induced vibration of power transmission towers[J].Journal ofWind Engineering and Industrial Aerodynamics,1999,83(1/3):431-441.
  • 7Savory E,Parke G,Zeinoddini M,et al.Modeling of tornado andmicroburst-induced wind loading and failure of a lattice transmissiontower[J].Engineering Structures,2001,23(4):365-375.
  • 8Shehata A Y,Damatty A A E,Savory E.Finite element modelingof transmission line under downburst wind loading[J].Finite Ele-ments in Analysis and Design,2005,42(1):71-89.
  • 9DL/T 5154-2002架空送电线路杆塔结构设计技术规定[S],2002.
  • 10ASCE 10-97Design of latticed steel transmission structures[S],1997.

二级参考文献186

共引文献416

同被引文献158

引证文献19

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部