期刊文献+

多目标大博弈中弱Pareto-Berge均衡的存在性 被引量:2

THE EXISTENCE OF WEAKLY PARETO-BERGE EQUILIBRIUM POINTS IN MULTIOBJECTIVE LARGE GAMES
原文传递
导出
摘要 研究了具有任意多个局中人的非合作多目标博弈(多目标大博弈).基于一般非合作博弈中的Berge均衡概念,定义多目标大博弈中的弱Pareto-Berge均衡.进一步推广了截口定理,得到新的截口定理,并且利用这个新的截口定理证明多目标大博弈中弱Pareto-Berge均衡的存在性.多目标大博弈中弱Pareto-Nash均衡的存在性结论可作为弱Pareto-Berge均衡存在性的特例给出. This paper considers noncooperative multi-objective games with multi-players (multi-objective large game). According to Berge equilibrium in normal games, we introduce the notion of weakly Pareto-Berge equilibrium in multi-objective large games. By generalizing section theorem, we show the existence of weakly Pareto-Berge equilibrium in multi-objective large games. As a special case, we obtain the existence of weakly Pareto-Nash equilibrium points in multi-objective large games.
作者 蒲勇健 杨哲
出处 《系统科学与数学》 CSCD 北大核心 2012年第1期70-78,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(70661001) 重庆大学研究生科技创新基金(200911B0A0050321)
关键词 多目标大博弈 截口定理 弱Pareto-Berge均衡 弱Pareto-Nash均衡 存在性. Multi-objective large game, section theorem, weakly Pareto-Berge equilib- rium, weakly Pareto-Nash equilibrium, existence.
  • 相关文献

参考文献21

  • 1Schmeidler D.Equilibrium points in nonatomic games.J.Stat.Phys.,1973,7:295-300.
  • 2Mas-Colell A.On a theorem of Schmeidler.J.Math.Econ.,1984,13:201-206.
  • 3Kalai E.Large robust games.Econometrica,2004,72:1631-1665.
  • 4Al-Najjar N I.Large games and the law of large numbers.Games.Econ.Behav.,2008,6:1-34.
  • 5Salonen H.On the existence of Nash equihbria in large games.Int.J.Game Theory,2010,39: 351-357.
  • 6Blackwell D.An analog of the minimax theorem for vector payoffs.Pac.J.Math,1956,6:1-8.
  • 7Shapley L S.Equilibrium points in games with vector payoffs.Naval Research Logistics Quarterly, 1959,6:57-61.
  • 8Chose D,Prasad U R.Concepts in two-person multicriteria games.J.Opti.Theory Appl.,1989, 63:167-189.
  • 9Wang S Y.Existence of a Pareto equilibrium.J.Opti.Theory Appl.,1993,79:373-384.
  • 10Yu J,Yuan X Z.The study of Pareto equihbria for multiobjective games by fixed point and Ky Fan minimax inequality methods.Computers Math.Applic,1998,35(9):17-24.

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部