期刊文献+

双磷酸改性血管支架作为基因载体的研究 被引量:1

Study on gene delivery system based on bisphosphonate-mediated gene-eluting stent
原文传递
导出
摘要 目的将基因通过化学偶联和特异性免疫结合在双磷酸氨基酯改性的316L不锈钢冠状动脉支架上,评价支架改性和负载质粒DNA的效果。方法金属支架首先利用双磷酸氨基酯改性引入氨基活性基团,化学偶联抗DNA抗体,然后免疫偶联质粒DNA,得到血管支架上负载抗体和基因的模型。结果利用x射线光电子能谱(xPs)和原子力显微镜(AFM)等分析确定了支架表面磷酸氨基的存在,同位素标记验证了改性后支架表面结合的抗体具有很好的稳定性和结合容量。结论双磷酸氨基改性的血管支架表层富含可反应氨基,可以作为新型反应界面,与生物活性分子进行偶联反应。 Objective The aim of the present study was to investigate the incorporation of plasmid DNA (pDNA) onto a coronary stent by chemo-immuno-conjugation for achieving site-specific gene delivery. Methods A gene eluting stent was fabricated by reacting with polyallylamine bisphosphonate (PAA-BP) to introduce amine reactive groups on the surface. Then an anti-DNA antibody was chemically coupled and pDNA was immunologically tethered on the stent surface. Radioactive-labeled antibody was used to evaluate binding capacity and stability. Results The presence of amine groups on the modified stent surface was confirmed by XPS and AFM analysis. The isotope label assay indicated that the amount of antibody chemically linked on the stents was 15-fold higher than that of the control stent and its retention time was also significantly longer. Conclusion The results suggested that a large amount of reactive amine groups were introduced on the PAA-BP modified 316L coronary stent surface. This study provide a potential metal surface modification method that could facilitate coupling and tethering of biological molecules such as anti-DNA antibody and plasmid DNA (pDNA) to achieve sustained and highly localized gene delivery for substrate-mediated gene transfection.
出处 《国际生物医学工程杂志》 CAS 2012年第1期3-7,I0001,共6页 International Journal of Biomedical Engineering
基金 基金项目:国家自然科学基金重点项目(50830106) 国家自然科学基金资助项目(50903093)
关键词 支架 双磷酸酯 质粒DNA 基因载体 Stent Polyallylamine bisphosphonate Plasmid DNA Gene vector
  • 引文网络
  • 相关文献

参考文献17

  • 1Sharif F, Daly K, Crowley J, et al. Current status of catheter-and stent-based gene therapy[J]. Cardiovasc Res, 2004, 64(2): 208-216.
  • 2Awata M, Kotani J, Uematsu M, et al. Serial angioscopic evidence of incomplete neointimal coverage after sirolimus-eluting stent implan- tation: comparison with bare-metal stents[J]. Circulation, 2007, 116 (8): 910-916.
  • 3Daemen J, Wenaweser P, Tsuehida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study[J]. Lancet, 2007, 369(9562): 667-678.
  • 4Ellis SG, Colombo A, Grube E, et al. Incidence, timing, and corre- lates of stent thrombosis with the polymeric paclitaxel drug-eluting stent: a TAXUS II, IV, V, and VI meta-analysis of 3,445 patients fol- lowed for up to 3 years[J]. J Am Coll Cardiol, 2007, 49 (10): 1043- 1051.
  • 5Stone GW, Ellis SG, Cox DA, et al. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial[J]. Circulation, 2004, 109(16): 1942-1947.
  • 6Johnson TW, Wu Yin-xiong, Herdeg C, et al. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries[J]. Arterioscler Thromb Vasc Biol, 2005, 25(4): 754-759.
  • 7Takahashi A, Palmer-Opolski M, Smith RC, et al. Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent[J]. Gene Ther, 2003, 10 (17): 1471- 1478.
  • 8Jewell CM, Zhang Jing-tao, Fredin NJ, et al. Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelec- trolyte films[J]. Biomacromolecules, 2006, 7(9): 2483-2491.
  • 9Kopp CW, de Martin R. Gene therapy approaches for the prevention of restenosis[J]. Curt Vasc Pharmacol, 2004, 2(2): 183-189.
  • 10Numaguchi Y, Okumura K, Harada M, et al. Catheter-based prosta- cyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries[J]. Cardiovasc Res, 2004, 61(1): 177-185.

同被引文献30

  • 1Butt M, Connolly D, Lip GY. Drug-eluting stents: a comprehensive appraisal [ J ]. Future Cardiol, 2009 ; 5 ( 2 ) : 141-157.
  • 2Martin DM, Boyle FJ. Drug-eluting stents for coronary artery disease: a review [ J ]. Med Eng & Phys, 2011, 33 (2) : 148-163.
  • 3Luscher TF, Steffel J, Eberli FR, etal. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications [ J ]. Circulation, 2007, 115 ( 8 ) : 1 051-058.
  • 4Al-Dehneh A, Virk H, Alkhouri Y, et al. Drug-eluting stent thrombosis 1659 days after stent deployment: case report and literature review [ J]. Tex Heart Inst J, 2010, 37 ( 3 ) : 343-346.
  • 5Hironobu T, Didier L, David WG. Delivery of large biopharmaceuticals from cardiovascular stents: a review [ J ]. Biomacromolecules, 2007, 8( 11 ) : 3 281-293.
  • 6Beijk MA, Klomp M, van Geloven N, et al. Two-year follow-up of the GenousTM endothelial progenitor cell capturing stent versus the Taxus Liberte stent in patients with de novo coronary artery lesions with a high-risk of restenosis : a ran- domized, single-center, pilot study [ J ]. Catheter Cardiovasc Interv, 2011, 78(2) : 189-195.
  • 7Klomp M, Beijk MA, Damman P, et al. Three-year clinical follow-up of an unselected patient population treated with the genous endothelial progenitor cell capturing stent [J]. J Interv Cardiol, 2011, 24(5) : 442-449.
  • 8Swanson N, Hogrefe K, Javed Q, et al. Vascular endothelial growth factor (VEGF)-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia [ J ]. J Invasive Cardiol, 2003, 15 (12) : 688-692.
  • 9Walter DH, Cejna M, Diaz-Sandoval L, et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis [ J ]. Circulation, 2004, 110(1): 36-45.
  • 10Xu H, Nguyen KT, Brilakis ES, et al. Enhanced endothelialization of a new stent polymer through surface enhancement and incorporation of growth factor-delivering microparticles [ J]. J Cardiovasc Transl Res, 2012, 5 (4) : 519-527.

引证文献1

二级引证文献1

相关主题

;
使用帮助 返回顶部