期刊文献+

锂离子电池正极材料xLi2MnO3·(1-x)Li[Ni(1/3)Mn(1/3)Co(1/3)]O2的制备及表征 被引量:21

Preparation and Characterization of xLi_2MnO_3·(1-x)Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2 Cathode Materials for Lithium-Ion Batteries
下载PDF
导出
摘要 以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%. The lithium rich cathode materials xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2 (x=0.4,0.5,0.6)were successfully synthesized via sol-gel method with calcination in air.The transition metal acetate,lithium acetate,and citric acid were used as raw materials.The as-prepared materials were characterized by X-ray diffraction(XRD),scaning electron microscopy(SEM),and electrochemical tests.The material 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3]O2 ,which was obtained after calcination at 900°C for 12 h,exhibited fine microstructures and good electrochemical performance.When cycled at 2.0-4.8 V with a current density of 20 mA·g^-1 at room temperature,0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3]O2 delivered a initial discharge specific capacity of 260.0 mAh·g^-1 ,and maintained a capacity of 244.7 mAh·g^-1 after 40 cycles(capacity retention 94.12%).
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2012年第4期823-830,共8页 Acta Physico-Chimica Sinica
基金 国家重点基础研究发展规划(973)(2009CB220100) 国家自然科学基金(51102018) 国家高技术研究发展计划(863)(SQ2010AA1123116001)资助项目~~
关键词 锂离子电池 溶胶-凝胶 固溶体 正极材料 电化学性能 Lithium-ion battery Sol-gel Solid solution Cathode material Electrochemical performance
  • 相关文献

参考文献1

二级参考文献13

  • 1Asano S., Science of sunscreens, Hyoumenkagaku, 1994, 15: 473.
  • 2Masaki H., Skin damage induced by solarlight exposure and problems of sunscreen in the 21st century, Fragrance J., 1998, 26: 65.
  • 3Neades R., Cox L., and Pelling J.C., S-phase arrest in mouse keratinocytes exposed to multiple doses of ultraviolet B/A radiation, Mol. Carcinog., 1998, 23: 159.
  • 4He Q., Yin S., and Sato T., Synthesis and photochemical properties of zinc-aluminum layered double hydroxide/organic UV ray absorbing molecule/silica nanocomposites, J. Phys. Chem. Solids, 2004, 65: 395.
  • 5Dransfield G. P., Inorganic sunscreens, Radiat. Prot. Dosim., 2000, 91: 271.
  • 6Yabe S. and Sato T., Cerium oxide for sunscreen cosmetics, J. SolidState Chem., 2003, 171: 7.
  • 7Masui T., Hirai H., Hamada R., Imanaka N., Adachi G., Sakata T., and Mori H., Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride, J. Mater. Chem., 2003, 13: 622.
  • 8Fujishima A. and Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238: 37.
  • 9Herrmann J.M., Guillard C., and Pichat P., Heterogeneous photocatalysis: an emerging technology for water treatment, Catal. Today, 1993, 17: 7.
  • 10Trovarelli A. Catalysis by Ceria and Related Materials, Im- perial College Press, London, 2002.

共引文献5

同被引文献350

引证文献21

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部