期刊文献+

水下通气空泡航行体结构模态及冲击响应研究 被引量:2

Mode and impulse response of ventilated cavitating underwater vehicles
下载PDF
导出
摘要 将航行体水下通气空泡简化为空气弹簧,并基于结构水下附加质量与空气弹簧作用原理,推导了水下通气空泡航行体在局部通气空泡包裹下的流固耦合振动方程.基于该振动方程,对通气空泡航行体在不同空泡长度包裹下的模态频率以及冲击载荷作用下的结构响应进行了分析,并将结果与将通气空泡简化为真空情况的计算结果进行对比.研究结果表明,结构的模态频率随通气空泡长度的增大而波动增大;通气空泡刚度对结构模态频率的影响随模态阶数的增大而减小;在冲击载荷作用下,通气空泡长度越大,响应幅值越小、响应频率越高. The ventilated cavitation is first predigested to be an air suspension,and then,based on the theory of added mass and air suspension,the FSI vibration equation of ventilated cavitating underwater vehicles is deduced.The change of natural frequency of underwater vehicle,which is enwrapped by ventilated cavitation of different length,is computed,and the influences of ventilated cavitation on vibration of underwater vehicles are investigated.Based on these,the response of structure,impacted by a transverse force,has been analyzed.The results reveal that the natural frequency of structure increases wavily as well as the increment of the length of ventilated cavitation.It is also found that the first step mode frequency is influenced mostly by the elasticity of ventilated cavitation,besides,the influence of ventilated cavitation becomes weaker with the increase of mode step;Under the impact force,the response of amplitude becomes smaller and the response of frequency becomes bigger with the increment of the length of ventilated cavitation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第3期1-5,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10802026)
关键词 通气空泡 水下航行体 流固耦合 模态 结构响应 ventilated cavitation underwater vehicle FSI mode structure response
  • 相关文献

参考文献13

二级参考文献36

  • 1原亮明,宫相太,刘爽堃,王渊.铁道车辆空气弹簧垂向动态特性分析方法的研究[J].中国铁道科学,2004,25(4):37-41. 被引量:19
  • 2罗金玲,何海波.潜射导弹的空化特性研究[J].战术导弹技术,2004(3):14-17. 被引量:15
  • 3高永琪,顾建农.超空泡鱼雷有关流体动力分析[J].海军工程大学学报,2005,17(3):57-60. 被引量:19
  • 4Edward A, Ramana G, Ravi P. Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration[J]. International Journal of Solids and Structures, 2006, 43 (2): 642-657.
  • 5Eduard A. Analysis of body supercavitation in shallow water[J]. Ocean Engineering, 2007, 34 (2) : 1 602-1 606.
  • 6Kirschner I N, Kring D C, Stokes A W, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control, 2002, 8(2):219-242.
  • 7Harkins T K. Hydroballistics:development, theory and some test results[C]//19th International Sympo sium on Ballistics. [s. n.], 2001: 7-11.
  • 8May A. Water entry and cavity-running behavior of missiles[R]. ABD Ap2p429. San Diego: Navsea Hydroballistics Advisory Committee, 1975.
  • 9Mueller A, Kinnas S. Propeller sheet cavitation predictions using a panel method[J]. Journal of Fluids Engineering, 1999, 121(1): 282-288.
  • 10Young Y, Kinnas S. Numerical modeling of supercavitating propeller flows[J]. Journal of Ship Re search, 2003, 47(1): 48-62.

共引文献100

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部