期刊文献+

旋转机械参数图形软形态学自适应边缘检测 被引量:1

Fuzzy soft morphology self-adaptive edge detection of parameter image for rotating machinery
下载PDF
导出
摘要 针对旋转机械振动参数图形边缘特征提取困难问题,根据模糊软形态学理论,提出滤波增强处理方法及自适应边缘检测算子.在600 MW模化汽轮机转子试验台上进行转子正常运转、转子不平衡故障、转子不对中故障、汽流激振故障、轴承松动故障的实验研究.将得到的振动参数三维图形转化为二维灰度图形,对二维灰度图形进行模糊软形态学滤波增强处理和自适应边缘检测.结果表明,该方法在滤除参数图形中噪声的同时,可以有效地提取图形边缘特征,为旋转机械故障诊断提供了一种新的图形特征提取方法. Aiming at the problem that the edge features of vibration parameter images for rotating machinery are difficult to be extracted, the filtering enhancement processing method and the self-adaptive edge detection operator are established according to fuzzy soft morphology theory. The 3d vibration parameter images of rotor's normal state, fault of unbalance, misalignment, steam exciting vibration and bearing pedestal looseness were obtained from the experiments on the modeling of 600 MW turbine rotor experimental bench. These 3d images were transformed to 2d gray-scale images, and these 2d gray-scale images are processed with fuzzy soft morphology filtering enhancement processing and self-adaptive edge detection. The results show that with this method the noise of parameter images can be filtered out and the edge features of images can be extracted effectively, so that a new method to extract image features for rotating machinery fault diagnosis is provided.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第3期49-53,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50875056)
关键词 旋转机械 振动参数图形 模糊软形态学 自适应 边缘检测 rotating machinery vibration parameter image fuzzy soft morphology self-adaptive edge detection
  • 相关文献

参考文献12

  • 1刘占生,窦唯.旋转机械振动参数图形边缘纹理提取的数学形态学方法[J].振动工程学报,2008,21(3):268-273. 被引量:9
  • 2ZHAN Y, MAKIS V. A robust diagnostic model for gearboxes subject to vibration monitoring[J]. Journal of Sound and Vibration, 2006, 290:928 -955.
  • 3CHO S J, KIM J H. Bayesian network modeling of strokes and their relationships for on-line handwriting recognition[J]. Pattern Recognition, 2004, 37: 253- 26d.
  • 4JACK L B, NANDI A K. Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms[ J ]. Mechanical systems and sig- nal processing, 2002, 16 (2) : 373 - 390.
  • 5窦唯,刘占生,王政先,何鹏.旋转机械状态参数图形识别的免疫-模糊形态学方法[J].航空动力学报,2008,23(6):1151-1160. 被引量:1
  • 6HALKIOTIS S, BOTSIS T, RANGOUSSI M. Automatic detection of clustered microcalcifications in digital mam- mograms using nmthematical morphology and neural net- works[ J]. Signal Processing, 2007, 87 ( 7 ) : 1559 - 1568.
  • 7杨晖,张继武.数学形态学在图像边缘检测中的应用研究[J].辽宁大学学报(自然科学版),2005,32(1):50-53. 被引量:47
  • 8GASTERATOS A, SALIDES S T. Fuzzy soft mathematical morph-ology [ J ]. Image Signal Proeessing, 1998, 145(1): 41 -49.
  • 9BLOCH l, HENRI M. Fuzzy mathematical morphologies[J]. Pattern Recognition, 1995, 28(9) : 1341 - 1387.
  • 10LEE J S J, HARALICK R M. Morphology edge detection [ J ]. IEEE Trans on Robotics Automat, 1987 (3) : 140 - 156.

二级参考文献35

共引文献82

同被引文献48

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部