期刊文献+

互联网点评信息的有序性与序化方法研究 被引量:3

Order and Ordering Methods of Online Customer Reviews
下载PDF
导出
摘要 为解决互联网点评信息的过载、迷失,研究了互联网点评信息的序化问题。以大众点评网(dianping.com)为背景,研究了点评信息的特征及用户需求,并作为互联网点评信息序化的基础,研究了序化过程,提出并设计了点评信息的表层序化与内容序化,设计了基于用户需求的点评信息有序性的度量指标,并给出了点评信息序化的实例。 Tis paper studies the ordering of online wstomer revieas Intemet in order to solve the problems of information overload and lost. Taking dianping, corn as an example, the paper discusses the characteristics and users' requirements of review information to lay a base for review information ordering. The process of ordering is proposed,and layer ordering and content ordering are designed. Measurement indexes of review information ordering are given based on the users' requirements. At the end of this paper, a ease is given.
出处 《情报杂志》 CSSCI 北大核心 2012年第3期168-173,167,共7页 Journal of Intelligence
基金 国家自然科学基金项目“微内容生产加工模式及其支持平台的研究”(编号:71071066) 教育部人文社会科学研究项目“基于互联网信息的企业危机事件识别研究”(编号:11YJA630098)
关键词 点评信息 有序性 表层序化 内容序化 度量指标 online customer reviews ordering layer ordering content ordering measurement index
  • 相关文献

参考文献14

  • 1Chen Y,Xie J.Online Consumer Review:Word-of-Mouth as aNew Element of Marketing Communication Mix[J].Manage-ment Science,2008,54(3):477-491
  • 2Liu R L,Lin WJ.Mining for Interactive Identification of Users'Information Needs[J].Information Systems,2003,28(7):815-833.
  • 3Resnick P,Iacovou N,Suchak M,et al.GroupLens:An OpenArchitecture for Collaborative Filtering of Netnews[C].Pro-ceedings of ACM 1994 Conference on Computer Supported Co-operative Work.Chapel Hill,NC,1994:175-185.
  • 4Masuda Y,Ishitobi Y,Ueda M.Frame-Axis Model for Auto-matic Information Organizing and Spatial Navigation[C].Pro-ceedings of the 1994 ACM European Conference on HypermediaTechnology,Scotland,UK,1994:146-157.
  • 5马玉荣.论现代信息整序的层次与结构[J].情报杂志,2005,24(4):46-47. 被引量:2
  • 6马费成.Web2.0信息序化机制[J].图书情报知识,2009,26(6):14-18. 被引量:19
  • 7朱婷.情报学中的序性结构初探--以Web2.0下的分众分类为例[J].图书情报知识,2008,25(3):7-12. 被引量:10
  • 8刘记.基于Web2.0的信息有序结构及其测度研究[J].图书情报知识,2008,25(3):38-41. 被引量:5
  • 9John K,Nigel D,Narayanaswami C.User-Generated Content[J].Pervasive Computing,2008,7(4):10-11.
  • 10Park DH,Lee J,Han I.Information Overload and Its Conse-quences in the Context of Online Consumer Reviews[C].TheTenth Pacific Asia Conference on Information Systems,2006:197-209.

二级参考文献47

共引文献100

同被引文献58

  • 1任福珍,卢桂兰.情报信息系统的耗散结构分析[J].情报杂志,2004,23(10):71-72. 被引量:12
  • 2Park D, Lee J. eWOM Overload and Its Effect on Consumer Behav- ioural Intention Depending on Consumer Involvement[J]. Electron- ic Commerce Research and Applications, 2008, 7 (4) :386 -398.
  • 3Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales : Online Book Reviews[ J]. Journal of Marketing Research, 2006,43 (3) :345 - 354.
  • 4Liu Q, Karahanna E, Watson R T. Unveiling User - generated Content: Designing Websites to Best Present Customer Reviews[ J]. Business Horizons, 2011,54 ( 3 ) :231 - 240.
  • 5戴维·迈尔斯.社会心理学(英文版)[M].北京:人民邮电出版社,2012:228—244.
  • 6Cheung C M K, Thadani D R. The Impact of Electronic Word - of -mouth Communication: A Literature Analysis and Integrative Model[ J]. Decision Support Systems, 2012, 54( 1 ) : 461 -470.
  • 7Mudambi S M, Sehuff M. What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon. com[ J]. MIS Quarterly, 2010, 34(1) : 185 -200.
  • 8Purnawirawan N, Pelsmacker P D, Dens N. Balance and Sequence in Online Reviews : How Perceived Usefulness Affects Attitudes and Intentions[ J ]. Journal of Interactive Marketing, 2012, 26 ( 4 ) : 244 - 255.
  • 9Sikora R T, Chauhan K. Estimating Sequential Bias in Online Re- views : A Kalman Filtering Approach [ J ]. Knowledge - Based Sys- tems, 2012, 27:314 - 321.
  • 10Hu N, Zhang J, Pavlou P A. Overcoming the J - shaped Distribu- tion of Product Reviews[ J]. Communications of the ACM, 2009, 52(10) :144 -147.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部