期刊文献+

医学影像非刚性配准的并行加速及优化 被引量:1

A Parallel Algorithm for Non-rigid Image Registration
下载PDF
导出
摘要 三次B样条函数拟合小形变需要大量控制点,且非刚性配准的迭代算法和归一化互信息计算量巨大,使得非刚性配准缓慢.为了提高配准速度,提出基于B样条函数的二级并行算法,其中对归一化互信息使用数据并行算法;对梯度下降流使用任务并行算法,并将数据并行算法嵌入到任务并行算法中.为减少计算量,提出图像多层次局部熵提取自由形变场活动控制点的算法,使活动控制点仅分布于待配准的目标之上,并使用B样条系数的快速算法进一步减少计算量;对由于控制点分布优化造成的各线程块并行计算量不平衡的问题,使用类似于Greedy算法的计算平衡算法使各线程块的计算量均衡.实验结果表明,使用B样条系数快速算法可以减少约50%的B样条系数计算量;与串行算法相比,使用二级并行算法以及控制点分布优化算法可以达到60~80倍的加速效果;比现有的数据并行配准算法可提速约6倍. The non-rigid registration is slow due to large number of control points and the high cost of iterative strategy and the normalized mutual information(NMI).A parallel algorithm with a B-spline coefficient optimization is proposed to accelerate such registration.In this approach,the data parallel algorithm computes NMI and the task parallel algorithm,in which the data parallel algorithm is embedded,computes the gradient descent flow.Control points are restrained to be distributed on the targets according to the image local entropy for further reduction on computational cost.A balanced algorithm is presented to solve the computational imbalance problem caused by the uneven distribution of control points.Experiments showed that the use of the B-spline coefficient optimization can reduce about 50% coefficient computation.The introduced parallel algorithm can accelerate the non-rigid registration about 60~80 times compared to the serial version,about 6 times compared to the existing data parallel approaches.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第4期485-493,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 中国科学院知识创新工程重要方向(KGCX-YW-909-1)
关键词 并行算法 归一化互信息 梯度下降流 局部熵 parallel algorithm normalized mutual information gradient descent flow local entropy
  • 相关文献

参考文献14

  • 1Rohlfing T,Maurer C R,O'Dell W G.Modeling liver motionand deformation during the respiratory cycle usingintensity-based nonrigid registration of gated MR images[J].Medical Physics,2004,31(3):427 432.
  • 2Ahn W,Lee D Y.Real-time resolution of self-intersection indynamic cylindrical free-form deformation[J].IEEETransactions on Visualization and Computer Graphics,2011,17(4):515 526.
  • 3Zhang X,Zhao J B,Liu W J,et al.Skinning surfacealgorithm of B-spline for scattered point cloud[C]??Proceedings of International Conference on ConsumerElectronics,Communications and Networks.Los Alamitos:IEEE Computer Society Press,2011:2617 2620.
  • 4Li Y H,Wu J,Chen Z,et al.Registration of head CT imageswith subarachnoid hemorrhage[C]??Proceedings of the 3rdInternational Conference on Biomedical Engineering andInformatics.Los Alamitos:IEEE Computer Society Press,2010:498 502.
  • 5Beauchemin S S,Barron J L.The computation of optical flow[J].ACM Computing Surveys,1995,27(3):433 466.
  • 6Gueguen L,Soille P,Pesaresi M.Change detection based oninformation measure[J].IEEE Transactions on Geoscienceand Remote Sensing,2011,49(11):4503 4515.
  • 7周海芳,刘光明,郑明玲,杨学军.遥感图像自动配准的串行与并行策略研究[J].国防科技大学学报,2004,26(2):56-61. 被引量:9
  • 8Wachowiak M P,Peters T M.High-performance medicalimage registration using new optimization techniques[J].IEEE Transactions on Information Technology inBiomedicine,2006,10(2):344 353.
  • 9张加万,杨甲东,孙济洲,张红颖.基于GPU的弹性图像配准方法[J].天津大学学报,2008,41(8):946-950. 被引量:3
  • 10Krishnamurthy A,McMains S,Haller K.GPU-acceleratedminimum distance and clearance queries[J].IEEETransactions on Visualization and Computer Graphics,2011,17(6):729 742.

二级参考文献27

  • 1张红颖,张加万,孙济洲,杨甲东.基于层次B样条的医学图像弹性配准方法[J].天津大学学报,2007,40(1):35-40. 被引量:8
  • 2Thévenaz P,Ruttimann U E,Unser M A Pyramid Approach to Sub-pixel Registration Based on Intensity[J].IEEE Trans.Image Processing,1998,7(1).
  • 3Pratt W K.Correlation Techniques of Image Registration[J].IEEE Trans.on Aerospace and Electronics Systems,1974,AES-10(3).
  • 4Ozkan M,Fitzpatrick J M,Kawamura K Image Registration for a Transputer based Distributed System[A].In Proceedings of the 2 nd International Conference on Industrial & Engineering Applications of AI & Expert Systems(IEA/AIE-89),1989,6:908-915.
  • 5Le Moigne J,Towards a Parallel Registration of Multiple Resolution Remote Sensing Data[A].Proceedings of IGARSS'95,Firenze,Italy,1995.
  • 6Turton B,Arslan T,Horrocks D.A Hardware Architecture for a Parallel Genetic Algorithm for Image Registration[A].In Proceedings of IEEE Colloquium on Genetic Algorithms in Image Processing and Vision,1994,10:111-116.
  • 7El-ghazawi T,Chalermwat P,LeMoigne J.Wavelet-based Image Registration on Parallel Computers[A].In SuperComputing'97:High Performance Networking and Computing:Proceedings ACM/IEEE,1997.
  • 8Chalermwat P.High Performance Automatic Image Registration for Remote Sensing[D].George Mason University,Fairfax,Virginia,1999.
  • 9Brown L.A Survey of Image Registration Techniques[J].ACM Comput.Surv.,1992,24(4).
  • 10Le Moigne J,Campbell W J,Cromp R F.An Automated Image Registration Technique Based on the Correlation of Wavelet Features[J].IEEE Trans.on Geoscience and Remote Sensing,2002,40(8).

共引文献10

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部