期刊文献+

一种面向交互式虚拟环境的自适应变形方法

An Adaptive Deformation Method for Interactive Virtual Environment
下载PDF
导出
摘要 研究针对交互式虚拟环境提出了一种自适应变形方法,基于累进网格和层次式聚类,为模型构建一个累进网格二叉树;根据此结构和环境参数,将网格模型划分为若干个子网格分别进行简化,再缝合成一个多细节层次模型作为变形过程的输入。为了简化变形过程,变形约束被标准化为四种变形基元,根据空间映射规则投影到多细节层次模型上,控制变形操作和保持模型属性不变。实验表明该方法能够动态地灵活地构建多细节层次网格模型和调整各种变形约束,并应用在一个交互式虚拟环境即虚拟博物馆浏览系统中,实现实时的变形操作和良好的视觉效果。 For interactive virtual environment,a novel adaptive method was proposed to make use of hierarchical clustering to establish a hierarchical progressive mesh binary tree.Based on this structure,the original model was segmented into submeshes,which were simplified separately according to different environment parameters.Finally,a multi-level-of-detail model was achieved for deformation.To accelerate deformation on the multi-level-of-detail model,four constraint primitives and spatial projection rules were designed to normalize deformation constraints and preserve mesh features.Experimental results demonstrate that the novel method can compose a multi-level-of-detail mesh and modify deformation constraints dynamically and flexibly,which has been embedded into an interactive virtual environment-a virtual museum browsing system to guarantee the realtime deformation with desirable visual quality.
作者 卢威 潘金贵
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第4期830-836,共7页 Journal of System Simulation
基金 分布式虚拟环境中可扩展主动兴趣管理技术研究(60473113) 远程沉浸式虚拟奥运博物馆关键技术研究(60533080) An Interactive Object Deformation Framework(KFKT2009A13)
关键词 交互式虚拟环境 多细节层次 累进网格 网格变形 变形基元 interactive virtual environment level-of-detail progressive mesh mesh deformation deformation primitive
  • 相关文献

参考文献30

  • 1Gain J,Bechmann D.A Survey of Spatial Deformation from a User-centered Perspective[J].ACM Transaction on Graphics(S0730-0301),2008,27(4):1-21.
  • 2Botsch M,Sorkine O.On Linear Variational Surface DeformationMethods[J].IEEE Transaction on Visualization and ComputerGraphics(S1077-2626),2008,14(1):213-230.
  • 3Dong W L,Li J K,Jay Kuo C C.Fast Mesh Simplification forProgressive Transmission[C]//IEEE International Conference onMultimedia&Expo,New York,USA,2000.USA:IEEE,2000:1731-1734.
  • 4Hoppe H.Progressive Meshes[C]//Proceedings of the SIGGRAPH,New Orleans,USA.USA:ACM,1996:99-108.
  • 5Garland M,Heckbert P.Surface Simplification Using Quadric ErrorMetric[C]//Proceedings of the SIGGRAPH,Los Angeles,USA.USA:ACM,1997:209-216.
  • 6李现民,李桂清,张小玲,李华.基于子分规则的边折叠简化方法[J].计算机辅助设计与图形学学报,2002,14(1):8-13. 被引量:31
  • 7刘晓利,刘则毅,高鹏东,彭翔.基于尖特征度的边折叠简化算法[J].软件学报,2005,16(5):669-675. 被引量:55
  • 8Hoppe H,DeRose T,Duchamp T.Mesh Optimization[C]//Proceedingsof the SIGGRAPH,Chicago,USA.USA:ACM,1992:19-26.
  • 9Kobbelt L,Campagna S,Seidel H P.A General Framework for MeshDecimation[C]//Proceedings of Graphics Interface,Vancouver,Canada,1998.Conference paper,Canada:Canadian Human-ComputerCommunications Society,1998:43-50.
  • 10Garland M.Quadric-based Polygonal Surface Simplification[D].USA:School of Computer Science,Carnegie Mellon University,May,1999.

二级参考文献19

  • 1潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法[J].软件学报,1996,7(9):526-531. 被引量:63
  • 2周晓云 刘慎权.基于特征角准则的多面体模型简化方法[J].计算机学报,1996,19:217-223.
  • 3李捷.三角网格模型的简化及多分辨率表示:博士学位论文[M].北京:清华大学,1998..
  • 4Schroeder WJ, Zarge JA, Lorensen WE. Decimation of triangle meshes. Proc. of the Computer Graphics, 1992,26(2):65-70.
  • 5Turk G. Re-Tiling polygonal surface. Proc. of the Computer Graphics, 1992,26(2):55-64.
  • 6Kalvin A, Taylor R. Superfaces: Ploygonal mesh simplification with bounded error. IEEE Computer Graphics and Applications,1996,16(3):64-77.
  • 7Lounsbery M, DeRose T, Warren J. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. on Graphics,1997,16(1):34-73.
  • 8Rossignac J, Borrel P. Multi-Resolution 3D approximation for rendering complex scenes. In: Falcidieno B, Kunii T, eds. Modeling in Computer Graphics: Methods and Applications. Berlin: Springer-Verlag, 1993. 455-465.
  • 9Cohen J, Varshney A, Manocha D, Turk G, Weber H, Agarwal P, Brooks F, Wright W. Simplification envelopes. Proc. of the Computer Graphics, 1996,30:119-128. http://www.cs.unc.edu/~geom/envelope.html
  • 10Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Mesh optimization. Proc. of the Computer Graphics, 1993,27:19-26.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部