期刊文献+

一类时滞Nicholson果蝇系统数值Hopf分支分析 被引量:2

Numerical approximation of a class Nicholson’s blowflies model with delay
下载PDF
导出
摘要 研究了一类具时滞的果蝇系统的数值Hopf分支问题,讨论了该系统的离散化系统数值Hopf分支的存在条件,并证明了当步长充分小时,数值Hopf分支值逼近于原系统的Hopf分支值。 The numerical approximation of a class Nicholson's blowflies model with delay was studied in this paper.The existence conditions of Hopf bifurcations of the discrete system were discussed. It also proved that for sufficient small step,the numerical Hopf bifurcation value is approximate to that of the original equation.
出处 《齐齐哈尔大学学报(自然科学版)》 2012年第3期90-93,共4页 Journal of Qiqihar University(Natural Science Edition)
基金 黑龙江省教育厅科学技术资助项目(12511609)
关键词 Nicholson果蝇系统 欧拉方法 HOPF分支 数值逼近 Nicholson's blowflies model Euler method Hopf bifurcation numerical approximation
  • 相关文献

参考文献6

  • 1KULENOVI M R S,LADAS G,SFICAS Y G.Global attractivity in Nicholson’s blowflies[J].Appl Anal,1992,43:109-124.
  • 2KOCIC V L J,LADAS G.Oscillation and global attractivity in a discrete model ofNicholson’s blowflies[J].Appl Anal,1990,38:21-31.
  • 3WEI J,LI Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis,2005,60:1357-1367.
  • 4张春蕊.时滞logistic微分方程Hopf分支参数值的数值逼近[J].东北林业大学学报,2004,32(5):78-79. 被引量:1
  • 5Hale J K,Verdyn S M.Introduction to Functional Differential Equations[M].New York:SpringerVerlag,1993.
  • 6G Iooss.Bifureation of Maps and Applieations[M].New York:North Holland Publishing Company,1979:229-232.

二级参考文献1

  • 1[1]Neville J Ford, Volker Wulf. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations. JCAM, 1999,111:153 ~ 162

同被引文献11

  • 1李冬松,王秋宝,刘明珠.一类延迟微分方程的数值霍普夫分支分析[J].黑龙江大学自然科学学报,2007,24(1):19-23. 被引量:2
  • 2KULENOVI M R S, LADAS G, SFICAS Y G. Global attraetivity in Nicholson' s blowflies[ J]. Applicable Analysis, 1992, 43:109 -124.
  • 3KOCIC V L J, LADAS G. Oscillation and global attraetivity in a discrete model of Nieholson' s blowflies[ J]. Applicable Analysis, 1990, 38 : 21 -31.
  • 4WEI Jun-jie, LI M Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[ J]. Nonlinear Analysis, 2005, 60:1357 - 1367.
  • 5BEREZANSKY L, BRAVERMAN E, IDELS L. Nicholson' s blowflies differential equations revisited : main results and open problems [ J ]. Ap- plied Mathematical Modelling, 2010, 34:1405 -1417.
  • 6WANG Qiu-bao, LI Dong-song, LIU Ming-zhu. Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations [ J ] Chaos, Solitons & Fractals, 2009, 42 (5) : 3087 -3099.
  • 7ZHANG Chun-rui, ZHENG Bao-dong. Stability and bifurcation of a two-dimension discreten neural network model with multi-delays[ J ]. Chaos Solitons & Fractals, 2007, 31 (5) : 1232 -1242.
  • 8HALE J K, VERDYN S M. Introduction to functional differential equations[ M]. New York: Springer Verlag, 1993.
  • 9IOOSS G. Bifureation of maps and applieations[ M ]. New York: North Holland Publishing Company, 1979:229 -232.
  • 10张向华.具双时滞的Nicholson果蝇系统的动力学性质[J].哈尔滨工业大学学报,2011,43(6):70-75. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部