期刊文献+

基于矩形代数和公共模式方法的相似图像检索

An improved similarity retrieval of images based on CPM and rectangle algebra
下载PDF
导出
摘要 指出了图像检索中公共模式方法(common pattern method,CPM)所建立的type-i公共子图无法精确描述区域间的空间拓扑关系.研究采用矩形代数表示CPM中区域间的空间拓扑关系,得到了拓扑表达更精确的相似性图像检索算法(SRRA).该算法将对象抽象为最小边界矩形,采用矩形代数描述对象间的二维空间关系,构建基于矩形代数的相似图,并从中寻找最大相似对象集合.实验结果表明,SRRA不仅在效率上优于基于CPM的算法,且检索效果更符合用户要求. The common pattern method (CPM) is one of the excellent algorithms among state oi the art similarity image retrieval methods. However, the type-/rule using in CPM is unable to exactly distinguish the topological re- lationships between areas. By applying rectangle algebra to CPM, a novel similarity retrieval by rectangle algebra (SRRA) was proposed. SRRA abstracts an object into a minimum bounding rectangle, uses rectangle algebra to express the 2D space relationship between objects, constructs similarity graphs based on rectangle algebra, and obtains a maximum similar objects set. The experimental results show that SRRA performs better than CPM with respect to the time consumed and the precision of retrieval results.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2012年第2期100-106,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(60773099 60973088)~~
关键词 数据挖掘 基于内容的图像检索 空间关系 相似性图像检索 矩形代数 语义检索 最小边界矩形 模式识别 data mining content-based image retrieval spatial relationship similarity retrieval rectanglealgebra semantic retrieval minimum bounding rectangle pattern recognition
  • 相关文献

参考文献17

  • 1Datta R, Joshi D, LI Jia, et al. Image retrieval: ideas, influences, and trends of the new age [ J ]. ACM Compu- ting Surveys, 2008, 40(2) : 1-60.
  • 2Gudivada V N, Raghavan V V. Design and evaluation of algorithms for image retrieval by spatial similarity [ J ]. ACM Transactions on Information Systems, 1995, 13 (2) : 115-144.
  • 3E1-Kwae E A, Kabuka M R. A robust framework for con- tent-based retrieval by spatial similarity in image databases [ J]. ACM Transactions on Information Systems, 1999, 17 (2) : 174-198.
  • 4WANG Ying-hong. Image indexing and similarity retrieval based on spatial relationship model [ J ]. Information Sciences, 2003, 154(1/2): 39-58.
  • 5YIN Peng-yeng, LIU Chin-wen. A new relevance feedback technique for iconic image retrieval based on spatial rela- tionships [ J ]. The Journal of Systems and Software, 2009, 82(4): 685-696.
  • 6Hsieh Shu-Ming, Hsu Chiun-Chieh. Retrieval of images by spatial and object similarities [ J ]. Information Pro- cessing and Management, 2008, 44(3) : 1214-1233.
  • 7Hsieh Shu-Ming, Hsu Chiun-Chieh. Graph-based repre- sentation for similarity retrieval of symbolic images [ J ]. Data and Knowledge Engineering, 2008, 65 (3): 401- 418.
  • 8Chiang J Y, Cheng Shuenn-ren, Huang Shuenn-Reng, et al. Multiple-instance image database retrieval by spatial similarity based on interval neighbor group [ C ]// Pro- ceedings of the ACM International Corfference on Image and Video Retrieval CIVR'10. Xi'an ( China ) : ACM Press, 2010: 135-142.
  • 9Wang Hui-hui, Mohamad Dzulkifli, Lsmail N A. Semantic gap in CBIR: automatic objects spatial relationships se- mantic extraction and representation [ J ]. International Journal of Image Processing, 2010, 4(3) : 192-204.
  • 10Rezaei-Kalantari Kimia, Eftekhari-Moghadam A M. Sym- bolic image indexing and retrieval by spatial similarity: a new approach based on multi-dimensional B + tree [ C ]// The 4th International Conference on New Trends in Infor- mation Science and Service Science (NISS). Gyeongju (Korea) : [s. n. ], 2010: 145-152.

二级参考文献65

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3邬长安,江祥奎,原思聪.基于灰色系统理论的相关反馈图像检索算法[J].情报杂志,2006,25(11):114-115. 被引量:3
  • 4CHANG S K, YAN C W, DIMITROFF D C, et al. An intelligent image database system[J]. IEEE Trans on Software Eng, 1988, 14 (5) : 412-421.
  • 5RUI Y, HUANG T S, MEHROTRA S, et al. Relevance feedback: a power tool for interactive content-based image retrieval [ J]. IEEE Trans on Circuits and System for Video Technology, 1998, 4 (5) : 644-655.
  • 6STRICKER M, ORENGO M. Similarity of color images[ C]//Proc of SPIE Storage and Retrieval for Image and Video Databases III. 1995 : 381- 392.
  • 7SMITH J R, CHNNG S F. Tools and techniques for color image retrieval[ C]//Proc of SPIE Storge and Retrieval for Image and Video Databases IV. 1996:426- 437.
  • 8GEVERS T, SMEULDERS A W M. PicToSeek: combining color and shape invariant features for image retrieval [ J ]. IEEE Trans on Image Processing, 2000, 9( 1 ):102-119.
  • 9CHANG T, KUO C C J. Texture analysis and classification with tree- structured wavelet transform [ J ]. IEEE Trans on Image Proces- sing, 1993, 2(4) :429-441.
  • 10DAUGMAN G. Complete discrete 2D Gabor transforms by neural networks for image analysis and compression[ J]. IEEE Trans on ASSP, 1998,36 (7) : 1169- 1179.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部