摘要
指出了图像检索中公共模式方法(common pattern method,CPM)所建立的type-i公共子图无法精确描述区域间的空间拓扑关系.研究采用矩形代数表示CPM中区域间的空间拓扑关系,得到了拓扑表达更精确的相似性图像检索算法(SRRA).该算法将对象抽象为最小边界矩形,采用矩形代数描述对象间的二维空间关系,构建基于矩形代数的相似图,并从中寻找最大相似对象集合.实验结果表明,SRRA不仅在效率上优于基于CPM的算法,且检索效果更符合用户要求.
The common pattern method (CPM) is one of the excellent algorithms among state oi the art similarity image retrieval methods. However, the type-/rule using in CPM is unable to exactly distinguish the topological re- lationships between areas. By applying rectangle algebra to CPM, a novel similarity retrieval by rectangle algebra (SRRA) was proposed. SRRA abstracts an object into a minimum bounding rectangle, uses rectangle algebra to express the 2D space relationship between objects, constructs similarity graphs based on rectangle algebra, and obtains a maximum similar objects set. The experimental results show that SRRA performs better than CPM with respect to the time consumed and the precision of retrieval results.
出处
《深圳大学学报(理工版)》
EI
CAS
北大核心
2012年第2期100-106,共7页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(60773099
60973088)~~
关键词
数据挖掘
基于内容的图像检索
空间关系
相似性图像检索
矩形代数
语义检索
最小边界矩形
模式识别
data mining content-based image retrieval
spatial relationship similarity retrieval rectanglealgebra semantic retrieval minimum bounding rectangle pattern recognition