摘要
由于人的重名现象,人名检索的结果往往是同名的不同人物实体相关网页的混合。重名消解是根据上下文来区分同名的不同人物实体的过程。本文提出了基于相关社区的重名消解方法,采用改进的Espresso算法进行相关社区发现。将每个网页发现的社区应用到两阶段重名消解算法中,并且在WePS-2测试集上进行试验。实验结果表明了该方法的有效性。
Person's names are so ambiguous that the results of searching for a person's name are usually a mixture of pages about namesakes. Person's name disambiguation is a course of distinguishing different person's entities with the same name. The method of person's name disambiguation based on the relevant community was proposed and the modi- fied Espresso algorithm was used to find relevant community for each Web page. The enlarged name sets were applied in the two-stage person's name disambiguation algorithm, and then the algorithm was tested it on the WePS-2 test data- set. The experimental results show the effectiveness of our method.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2012年第3期33-37,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(60970047
61103151
61173068)
教育部博士点基金项目(20110131110028)
关键词
社会网络
社团
重名消解
人名检索
聚类
social network
community
person's name disambiguation
Web people search
clustering