期刊文献+

部分线性模型的LASSO估计及其渐近性 被引量:2

Asymptotics for the LASSO estimator for partially linear models
原文传递
导出
摘要 结合截面最小二乘估计思想,构造了LASSO惩罚截面最小二乘估计,并研究了惩罚参数和窗宽的选择问题。由于部分线性模型LASSO解仍为线性优化问题,因此容易实现。在一定条件下,本文还研究了参数估计量的相合性和渐近正态性。最后通过蒙特卡洛模拟研究了变量选择方法的小样本性质。 Based on the profile least squares method, the LASSO penalty profile least squares estimator is constructed, and the choices of penalty parameter and bandwidth are also discussed. Because the optimization problem is linear, it can be easily implemented. Under some regular conditions, the consistency and asymptotic normality of the estimator for parameter component are investigated. Finally, Monte Carlo simulation studies are conducted to assess the finite sample performance of the proposed variable selection procedures.
作者 李锋 卢一强
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期93-97,共5页 Journal of Shandong University(Natural Science)
关键词 部分线性模型 变量选择 渐近分布 LASSO partially linear models variable selection asymptotics LASSO
  • 相关文献

参考文献17

  • 1ROBERT F ENGLE, GRANGER C W J, RICE J, et al. Semiparametric estimates of the relation between weather and electric- ity sales [J].Journal of the American Statistical Association, 1986, 81:310-320.
  • 2SPECKMAN P. Kernel smoothing in partial linear models[J]. Journal of the Royal Statistical Society:Series B, 1988, 50: 413-436.
  • 3HARDLE W, LIANG Hua, GAO Jiti. Partially linear models [ M]. Heidelberg:Springer Physica, 2000.
  • 4TIBSHIRANI R. Regression shrinkage and selection via the lasso [ J ]. Journal of the Royal Statistical Society: Series B, 1996, 58:267-288.
  • 5KNIGHT Keigth, FU Wenjiang. Asymptotics for lasso-type estimators [ J]. Annal of Statistics, 2000, 28:1356-1378.
  • 6EFRON B, HASTIE T. TIBSHIRANI R. Least angle regression (with discussion) [J]. Annal of Statistics, 2004, 32:407-451.
  • 7FAN Jianqing, LI Runze. Variable selection via nonconcave penalized likelihood and its oracle properties [J].Journal of the American Statistical Association, 2001, 96 : 1348-1360.
  • 8CANDES E, TAO T. The Dantzig selector: statistical estimation when p is much larger than n [J]. Annal of Statistics, 2007, 35:2313-2351.
  • 9FAN Jianqing, LI Runze. New estimation and model selection procedures for semiparametric modeling in longitudinal data a- nalysis[J]. Journal of the American Statistical Association, 2004, 99:710-723.
  • 10XIE Huiliang, HUANG Jian. SCAD-penalized regression in high-dimensional partially linear models[J].Annal of Statistics, 2009, 37:673-696.

同被引文献19

  • 1Engle R F. Semiparametric estimates of the relation between weather and electricity sales[J].Journal of the American Statistical Association,1986.310-319.
  • 2T Hastie,R Tibshirani. Varying-Coefficient Models[J].Journal of the Royal Statistical Society - Series B: Statistical Methodology,1993.757-796.
  • 3Tibshirani R. Regression Shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society - Series B: Statistical Methodology,1996.267-288.
  • 4Schwarz G. Estimating the dimension of a model[J].Annals of Statistics,1978.461-464.
  • 5ENGLE R F, GRAGER C W J, RICE L, et al. Semi parametric estimates of the relation between weather and electricity sales [J]. J Amer Statist Assoc, 1986, 81: 310-320.
  • 6HARDLE W, LIANG H, GAO J T. Partially Linear Models [M]. Heidelberg: Springer, 2000: 131-150.
  • 7XUE L G, ZHU L Z. Empirical likelihood semi parametric regression analysis for longitudinal data[J]. Biometrika, 2007, 94: 921-937.
  • 8FRANK 1, FRIEDMAN J. A statistical view Of some chemometrics regression tools with discussion) [J]. Tech.nometrics , 1993, 35: 109- 148.
  • 9TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. J R Stat Soc: Ser B, 1996, 58: 267-288.
  • 10ZOU H. The adaptive lasso and its oracle properties[J]. J Amer Statist Assoc, 2006, 101: 1418-1429.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部