期刊文献+

一类无约束二层规划问题的区间算法 被引量:1

An interval algorithm for a class of unconstrained two-level programming problems
原文传递
导出
摘要 讨论了目标函数为一阶连续可微函数的无约束二层规划问题的区间算法,构造了二层规划问题目标函数的区间扩张和无解区域删除检验原则,建立了求解无约束二层规划问题的区间算法,并进行了数值实验。理论证明和数值实验均表明算法是可靠和有效的。 The interval algorithm for a class of unconstrained two-level programming problems is discussed, in which the objective functions are in C1. By way of constructing the interval extensions of the two-level objective functions and introducing the test rules of region deletion, an interval algorithm for solving unconstrained two-level programming problems is established, and experimentation upon the numerical examples is performed. Both theoretical proof and nu- merical experiments show that the algorithm is reliable and effective.
作者 秦军 曹德欣
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期120-126,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(70901073) 中央高校基本科研业务费专项基金项目(JGK101676)
关键词 二层规划 区间算法 区间扩张 two-level programming interval algorithm interval extension
  • 相关文献

参考文献10

  • 1SHI Chenggen, ZHANG Guanquan, LU Jie. The Kth-best approach for linear bilevel multi-follower programming [J].Journal of Global Optimization, 2005, 33 (4) : 563-578.
  • 2EDMUNDS T A, BARD J F. An algorithm for the mixed-integer nonlinear bilevel programming problem[ J]. Annals of Oper- ations Research, 1992, 34(1 ) : 149-162.
  • 3SAVARD G, GAUVIN J. The steepest descent direction for the nonlinear bilevel programming problem [ J ]. Operations Re- search Letters, 1994 (5) : 265-272.
  • 4邓先礼,雷万明.用罚函数求解二层凸规划的方法[J].应用数学学报,2001,24(2):161-167. 被引量:6
  • 5李响,高常海,刘梁.求解二层规划问题的改进粒子群算法[J].徐州工程学院学报(自然科学版),2009,24(2):21-24. 被引量:1
  • 6SHEN Zuhe, MEUMAIER A, EIERMANN M C. Solving minimax problems by interval methods[J].BIT, 1990, 30: 742- 751.
  • 7CAO Dexin, CHEN Meirong, WANG Haijun, et al. Interval method for global solutions of a class of min-max-min problems [ J]. Applied Mathematics and Computation, 2008, 196(2) : 594-602.
  • 8ASAITHAMBI N S,SHEN ZUHE, MOORE R E. On computing the range of values[J]. Computing, 1982, 28: 225-237.
  • 9MOORE R E. Methods and applications of interval analysis[ M]. Phiadelphia: SIAM, 1979.
  • 10RATSCHEK H, ROKNE J. New computer methods for global optimization[ M]. Chichester: Ellis Horwood Limited, 1988.

二级参考文献9

  • 1李宏,王宇平,焦永昌.解非线性两层规划问题的新的遗传算法及全局收敛性[J].系统工程理论与实践,2005,25(3):62-71. 被引量:22
  • 2[1]Aiyoshi E, Shimizu K. A solution method for the static constrained stackelberg problem via penalty method. IEEE Trans. Automat. Contr., 1984, 12(AC-29): 1111-1114
  • 3[2]Yezza A. First-order necessary optimization conditions for general bilevel programming problems.Journal of Optimization Theory and Applications, 1996, 89:189-219
  • 4[3]Horst R, Tuy H. Global optimization-determinstic Approaches. New York: Springer-Verlag, 1990
  • 5[4]Lhoffman K. A method for globally minimizing concave fucntions over convex sets. Mathematical programming, 1981, 20:22-32
  • 6[5]Falk J E, Hoffman K L. A successive underestimation method for concave minimization problem.Mathematics of Operations Research, 1975, 1:251-259
  • 7[6]A1-Khayyal F, Horst R, Pardalos P. Global optimization of concave functions subject to quadratic constraints: an application in nonlinear bilevel programming. Annals of Operations Res., 1992, 34:125-147
  • 8[7]Bard J F. Optimality conditions for bilevel programming problem. Naval Res. Logistic Quart. 1988,35:413-418
  • 9[8]Bazaraa M S, Shetty C M. Nonlinear programming. Theory and ALgorithms. New York: Wiley, 1979

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部