期刊文献+

Logistic回归和T检验在基因特征提取中的应用 被引量:2

The application of logistic regression and T test in gene feature extraction
下载PDF
导出
摘要 针对基因表达谱数据特有的维数高、样本小、非线性的特点,对基因特征提取和分类进行研究,提出将Lo-gistic回归和T检验方法引入基因的特征提取过程。通过Logistic回归初步筛选基因,T-test检验二次筛选特征基因,针对提取的特征构建分类器,得到提取的特征最少、分类效果最好的判别模型。建立分类模型的方法取得良好的癌症分类效果,具有很好的生物解释意义,为寻找致病基因提供了重要依据。 Based on the research of gene feature extraction andits classification,this paper introduces the Logistic regression and T test method into gene feature extraction process.Specifically,through the Logistic regression preliminary selecting in gene,T-test inspection secondary screening genetic characteristics,and finally building classifier according to the extracted characteristics,this paper comes to a conclusion with the best discriminatory analysis under which the extracted characteristics is least,but classification effect is the best.
出处 《桂林电子科技大学学报》 2012年第1期69-71,81,共4页 Journal of Guilin University of Electronic Technology
基金 广西信息与通讯技术重点实验室主任基金(PF090109)
关键词 LOGISTIC回归 T检验 判别分析 特征提取 Logistic regression T-test discriminant analysis feature extraction
  • 相关文献

参考文献9

  • 1Pal N R,Sharma A,Sanadhya S K.Deriving meaning-ful rulesfrom geneexpression data for classification[J].Journal of Intelligentand Fuzzy Systems,2008,19(3):171-180.
  • 2Yeh J Y.Applying datamining techniques for cancerclassificationon gene expression data[J].Cyberneticsand Systems,2008,39(6):583-602.
  • 3Pan W.A comparative review of statistical methods fordiscoVering differentially,expressed genes inreplicated-microarrayexperiments[J].Bioinformatics,2002,18(4):546-554.
  • 4Zhang Jiulong,Li Peng.Facial feature extraction by cur-velet transformand LDA[J].Journal of Information andComputational Science,2008,5(3):1333-1339.
  • 5Fox R,Dimmic M.A two-sample Bayesian T-test formicroarray data[J].BMC Bioinformatics,2006,7:126.
  • 6陈清华,陈六君,郑涛,陈家伟.基于非负矩阵分解方法的汉字基本部件识别[J].计算机工程与应用,2008,44(29):76-78. 被引量:4
  • 7羊四清,卢新国,易叶青.基于ICA模式空间的基因分类[J].计算机工程与应用,2009,45(23):40-43. 被引量:3
  • 8Michael E W,Rechtsteiner A,Rocha L M.Singularvalue decompositionand principal component analysis[M]//Berrar D P,Dubitzky W,Granzow M.A Prac-tical Approach to MicroarrayData Analysis.Dordrecht:Kluwer Academic Publishers,2003:91-109.
  • 9Chen Yenlun,ZhengYuan F.Face recognition for tar-get detectionon PCA features with outlier information[C]//50th Midwest Symposiumon Circuits and Sys-tems.Canada Montreal:[s.n],2007:823-826.

二级参考文献30

共引文献4

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部