摘要
目的:对六味地黄丸缺味药进行Bayes 法和PRIMA法定性识别研究。方法:采用反相HPLC法对六味地黄丸缺味药模拟方的浸出物进行分析,选取9 个色谱峰的峰面积与内标峰面积之比值作为样本特征变量,通过169 个训练集样本建立了其中3 种缺味药的Bayes 法和PRIMA法判别分析数学模型。结果:3 种缺味药4 种模式的平均正确识别率Bayes 法和PRIMA 法均为100% ,对169 个预示集样本的平均预示率Bayes 法为100% ,PRIMA法为99 .6% 。结论:Bayes 法和PRIMA 法能对六味地黄丸3 种缺味药进行准确识别。
Objective: To qualitatively recognize the omitted ingredients in Liuwei Dihuang Pills by Bayesian analysis and PRIMA. Methods: The extracts of the pills were analyzed by HPLC, for each object, the areas of nine peaks relative to that of the internal standard were selected as classification features.The classification model was established on 169 training set objects.Result: The classification average accuracy was 100% for four patterns by Bayesian analysis,and 99.6% by PRIMA analysis. Conclusion: Bayesian analysis and PRIMA analysis can be used to classify and recognize the omitted ingredients in Liuwei Dihuang Pills.
出处
《中国中药杂志》
CAS
CSCD
北大核心
2000年第1期29-32,共4页
China Journal of Chinese Materia Medica
基金
霍英东教育基金
江苏省自然科学基金!(BK97076)
江苏省青年科技基金!(BQ98045)