期刊文献+

多尺度优化中kMC仿真计算效率的优化

Optimization of kMC Simulation Computational Efficiency in Multiscale Optimization
下载PDF
导出
摘要 为了降低计算代价,实现多尺度优化,本文从微观模型入手,以燃料电池反应-扩散过程为例,在动力学蒙特卡洛法(kinetics Monte Carlo,简称kMC)仿真中引入非结构化自适应建表方法(in situ Adaptive Tabulation,简称ISAT),组成kMC-ISAT混合方法,优化kMC仿真的计算效率。将该混合方法与传统kMC仿真结果进行对比,结果表明采用混合方法能够有效地减少仿真时间,优化计算效率,同时保证仿真的准确性。 In order to reduce the Computational price and realize the muhiscale optimization, from the standpoint of microcosmic model, this paper takes the reacting-diffusion process in the fuel cell for an example and Situ Adaptive Tabulation (ISAT) is introduced to the kinetics Monte Carlo (kMC) simulation, so a kMC-ISAT hybrid method is established to reduce, the computational time of kMC simulation. Compare the result with the corresponding one of kMC simulation. The result demonstrates the hybrid method can reduce the simulation time of kMC simulation and advance the calculation efficiency. At the same time, the accuracy is high enough.
出处 《微计算机信息》 2012年第3期145-146,106,共3页 Control & Automation
基金 国家自然科学基金资助项目(50876117) 中央高校基本科研业务费资助项目(CDJXS11140001) 复杂能源系统优化方法研究(CDJXS11141149) 基金申请人:杨晨 项目名称:复杂能源系统多尺度优化方法研究 基金颁发部门:国家自然科学基金委(50876117)
关键词 非结构化自适应建表 多尺度优化 动力学蒙特卡洛法 计算效率 ISAT multiscale optimization kMC computational efficiency
  • 相关文献

参考文献6

  • 1J.Fish,A.Ghouali:Multiscale analytical sensitivity analysis for composite materials.Int.J.Numer.Methods Eng.2001,50;1501.
  • 2Y.Liu,B.S.Minsker:Full multiscale approach for optimal control of in situ bioremediation.J.Water Res.Planning Management2004,26;130.
  • 3T.Binder,L.Blank,W.Dahmen,W.Marquardt:Iterative algorithms for multiscale state estimation,part1:Concepts.J Optim.Theory Applic.2001,111;501.
  • 4Rojana Pornprasertsuk,Jeremy Cheng,Hong Huang,Fritz B.Prinz.Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique[J].Solid State Ionics,2007,178:195-205.
  • 5Pope S B.Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J].Combustion Theory Modeling,1997,1:41263.
  • 6贾丽媛,黄丽,周翠红.自适应差分演化算法及其在全局优化中的应用[J].微计算机信息,2010,26(24):209-211. 被引量:1

二级参考文献9

  • 1Vesterstrom J .Thomsen R.A Comparative Study of Differential Evolutionary Particle Swam Optimization and Evolutinary Algorithms on Numerical Benchmark Problems[A].In Proceedings of the IEEE Congress on Evolutionary Computation Piscataway ,IEEE, 2004:1980-1987.
  • 2Liu Junhong Lampinen Jouni A Fuzzy Adaptive Differential Evolution Algorithm[A].IEEE Region 10 Annual Internatinal Conference,Proeeedings/TENCON,Beijing IEEE,2002,1:606-611.
  • 3MEZURA-MONTES E,COLLO CAC,TUN-MORALES I Simple feasibility rules and differential evolution for constranined optimization [C]//Proceedings of the 3rd Mexican International Conference on Artificial Intelligence,LNCS 2972 Heidelberg:Springer- Verlag,2004:707-716.
  • 4MEZURA-MONTES E,CARLOS A, COELLO C. A simple evolutionary stratey to solve constrained optimization problems[J].IEEE Transsactions on Evolutionary Computation,2005,9(1):1-17.
  • 5HAM DA SB,SCHOENAUERM.ASCHEA:New results using adaptive segregational constrint handling [C]//Proceedings of the 2002 Congress on Evolutionary Computation Piscataway:IEEE Service Center,2002,1:884-889.
  • 6Shi Y,Eberhart C.Partiele Swarm Optimization :development ,applications and resources[C],In:Proc Congress on Evolutionary Computation 2001 NJ:Piscataway,IEEE Press,2001:81-86.
  • 7呈祥兴,等.混沌学导论[M].上海:上海科学技术文献出版社,1996.
  • 8潘正君 康立山 陈毓屏.演化计算[M].北京:清华大学出版社,2000..
  • 9李素萍,王世杰.基于差分演化算法的PID参数优化算法[J].微计算机信息,2008,24(22):305-306. 被引量:2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部