期刊文献+

有向笛卡尔积图的有向度量维数(英文) 被引量:1

The Directed Metric Dimension of Cartesian Product of Digraphs
下载PDF
导出
摘要 设D是一个有向图,w={w_1,w_2,…,w_k}是D的一个有序点子集,v是D中任意一点。我们把有序k元素组r(v|w)=(d(v,w_1),d(v,w_2),…,d(v,w_k))称为点v对于W的(有向距离)表示。如果在D中,任意两个不同的点u和v对W的(有向距离)表示都不相同,则称W是有向图D的一个分解集。我们把D的最小分解集的基数称为有向图D的有向度量维数,并用dim(D)来表示。本文研究了有向笛卡尔积图D_1×D_2的有向度量维数。设P_m和C_m分别是长为m的有向路和有向圈。在文中我们分别给出了dim(D_1×D_2)的一个下界与dim(D×P_m)和dim(D×C_m)的上界,并通过确定dim(P_m×P_n),dim(C_m×P_n)和dim(C_m×C_n)的精确值说明了我们给出的上界是紧的。 Abstract For a vertex set W ={Wl,W2,...,wk} of a digraph D and a vertex v C V(D), the (directed distance) representation of v with respect to W is the ordered k-tuple r(v/W) = (d(v, wl),d(v, w2),...,d(v, wk)), and W is a resolving set of D if r(v/W) ~ r(u/W) holds for any pair of distinct vertices u and v. The directed metric dimension of D, denoted by dim(D), is the cardinality of a smallest resolving set of D. In this paper, we study the directed metric dimension of the Cartesian product digraph D1 x 02. Let Pm and Cm be the directed path and the directed cycle of length m, respectively. A lower bound is given for dim(D1×D2), and upper bounds are given for dim(D × Pm) and dim(D× Cm), respectively. The exact values of dim(Pm×Pn), dim(Cm × Pn), and dim(Cm ×Cn) are determined, which shows that our upper bounds are sharp.
出处 《数学研究》 CSCD 2012年第1期1-8,共8页 Journal of Mathematical Study
基金 supported by NSFC(10971255) The Project-sponsored by SRF for ROCS,SEM
关键词 有向度量维数 笛卡尔积 分解集 Directed metric dimension Cartesian product Resolving set
  • 相关文献

参考文献15

  • 1Slater P.J..Leaves of trees.Proc.6th Southeastern Int.Conf.on Combinatorics, Graph Theorem and Computing,in Congr,14(1975):549-559.
  • 2Slater P.J..Dominating and reference sets in graphs.J.Math.Phys.Sci.,22(1988): 445-455.
  • 3Khuller S.,Raghavachari B.,Rosenfeld A..Landmaks in graphs.Discrete Applied Mathematics,70(1996):217-229.
  • 4Chartrand G.,Eroh L.,Jhonson M.A.,Oellermann O.R..Resolvabiblity in graphs and the metric dimension of a graph.Discret Applied Mathematics,105(2000):99-113.
  • 5Chartrand G.,Raines M.,Zhang P.,Kalamazoo.The directed distance dimension of oriented graphs.Mathematica Bohemica,125(2000):155-168.
  • 6Chartrand G.,Raines M.,Zhang P..On the dimension of oriented graphs.Utilitas Math.,60(2001):139-151.
  • 7Fehr M.,Gosselin S.,Oellermann O.R..The metric dimension of Cayley digraphs. Discrete Mathematics,306(2006):31-41.
  • 8Oellermann O.R.,Pawluck C,Stokke A..The metric dimension of Cayley digraphs of abelian groups.Ars Combin.,81(2006):97-112.
  • 9Brigham R.C.,Orlando,Chartrand G.,Kalamazoo,Dutton R.D.,Zhang P.,Resolving domination in graphs,Mathematica Bohemica,128(1)(2003):25-36.
  • 10Caceres J.,Hernando C,Mora M.,Pelayo I.M.,Puertas M.L.,Seara C.On the metric dimension of Cartesian product of graphs.SIAM Journal of Discrete Mathematics, 21(2)(2007):273-302.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部