摘要
设D是一个有向图,w={w_1,w_2,…,w_k}是D的一个有序点子集,v是D中任意一点。我们把有序k元素组r(v|w)=(d(v,w_1),d(v,w_2),…,d(v,w_k))称为点v对于W的(有向距离)表示。如果在D中,任意两个不同的点u和v对W的(有向距离)表示都不相同,则称W是有向图D的一个分解集。我们把D的最小分解集的基数称为有向图D的有向度量维数,并用dim(D)来表示。本文研究了有向笛卡尔积图D_1×D_2的有向度量维数。设P_m和C_m分别是长为m的有向路和有向圈。在文中我们分别给出了dim(D_1×D_2)的一个下界与dim(D×P_m)和dim(D×C_m)的上界,并通过确定dim(P_m×P_n),dim(C_m×P_n)和dim(C_m×C_n)的精确值说明了我们给出的上界是紧的。
Abstract For a vertex set W ={Wl,W2,...,wk} of a digraph D and a vertex v C V(D), the (directed distance) representation of v with respect to W is the ordered k-tuple r(v/W) = (d(v, wl),d(v, w2),...,d(v, wk)), and W is a resolving set of D if r(v/W) ~ r(u/W) holds for any pair of distinct vertices u and v. The directed metric dimension of D, denoted by dim(D), is the cardinality of a smallest resolving set of D. In this paper, we study the directed metric dimension of the Cartesian product digraph D1 x 02. Let Pm and Cm be the directed path and the directed cycle of length m, respectively. A lower bound is given for dim(D1×D2), and upper bounds are given for dim(D × Pm) and dim(D× Cm), respectively. The exact values of dim(Pm×Pn), dim(Cm × Pn), and dim(Cm ×Cn) are determined, which shows that our upper bounds are sharp.
出处
《数学研究》
CSCD
2012年第1期1-8,共8页
Journal of Mathematical Study
基金
supported by NSFC(10971255)
The Project-sponsored by SRF for ROCS,SEM
关键词
有向度量维数
笛卡尔积
分解集
Directed metric dimension
Cartesian product
Resolving set