期刊文献+

块Toeplitz方程组的快速块Gauss-Seidel迭代算法 被引量:1

Fast Block Gauss-Seidel Iterations for Toeplitz Systems
下载PDF
导出
摘要 本文研究块Toeplitz方程组的块Gauss-Seidel迭代算法.我们首先讨论了块三角Toeplitz矩阵的一些性质,然后给出了求解块三角Toeplitz矩阵逆的快速算法,由此而得到了求解块Toeplitz方程组的快速块Gauss-Seidel迭代算法,最后证明了当系数矩阵为对称正定和H-矩阵时该方法都收敛.数值例子验证了方法的收敛性. The block Gauss - Seidel iterations for solving block Toeplitz systems are considered in this paper. We first discuss some properties of block triangular Toeplitz matrices, then present fast algorithms for finding the inverses of such matrices, and further obtain fast block Gauss - Seidel iterative algorithms for block Toeplitz systems. Finally, we show that our methods are convergent when the coefficient matrices are symmetric positive definite or H - matrices. Some numerical examples demonstrate the convergence of our schemes.
出处 《数学理论与应用》 2012年第1期1-5,共5页 Mathematical Theory and Applications
基金 湖南省教育厅重点资助项目(09A002[2009])
关键词 块Toeplitz 块Gauss-Seidel迭代 快速算法对称正定H-阵 Block Toeplitz Block Gauss -Seidel iteration Fast algorithm Symmetric positive definite H -matrices
  • 相关文献

参考文献6

  • 1R.H.Chan and M.K.Ng.Conjugate gradient methods for Toeplitz systems,SIAM Rev.,38:427-482,1996.
  • 2D.Commges,M.Monsion.Fast Inversion of Triangular Toeplitz Matrices.IEEE Transactions on automatic con-trol,1984,29(3)250-251.
  • 3A.Frommer,D.B.Szyld.H-Splittings and two-stage iterative methods.Numerische Mathematic,1992,63:345-356.
  • 4G.H.Golub,C.F.Van Loan.Matrix Computation.Third Edition,The Johns Hopkins University Press,1996.
  • 5Zhong-Yun Liu,He-Bing Wu,Lu Lin.The two-stage iterative methods for symmetric positive definite ma-trices.Applied Mathematics and Computation,114(2000)1-12.
  • 6M.K.Ng.Iterative Methods for Toeplitz Systems,Oxford University Press,Oxford,UK,2004.

同被引文献14

  • 1游兆永,路浩.块Toeplitz三角阵求逆及块Toeplitz三角线性方程组求解的复杂性[J].Journal of Mathematical Research and Exposition,1989,9(1):101-106. 被引量:2
  • 2赵敏.块-Toeplitz矩阵的一种快速QR分解及算法实现[J].长江大学学报(自科版)(上旬),2007,4(2):4-5. 被引量:2
  • 3方保镕 周继东 李医民.矩阵论[M].北京:清华大学出版社,2004..
  • 4张凯院,徐仲.数值代数[M].2版.北京:科学出版社,2006:8.
  • 5Ng M K. Iterative Methods for Toeplitz Systems[M]. Ox- ford:Oxford University Press,2004.
  • 6Chan R H, Ng M K. Conjugate gradient methods for To- eplitz systems[ J ]. SIAM Rev,1996,38(3):427-482.
  • 7Shi Y J, Pi X B. New preconditioners for systems of linear equations with Toeplitz structure[ J ]. Calcolo,2014,51 (1):31 - 55.
  • 8Lin F R., Wang C X. BTTB preconditioners for BTTB sys- tems[J ]. Numerical Algorithms,2012,60(1):153-167.
  • 9Ng M K. Band precondtioners for Block-Toeplitz-To- eplitz-Block Systems[ J ]. Linear algebra and its applications, 1997,259:307-327.
  • 10Akaike H. Block Toeplitz matrix inversion[ J ]. SIAM J Ap- pl Math,1973,2(4):234-241.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部