期刊文献+

改进的粒子滤波算法 被引量:8

New Improved Particle Filter
下载PDF
导出
摘要 针对标准粒子滤波算法重采样后粒子多样性丧失问题,提出一种在粒子补偿的基础上,利用预测值与观测值的方差进行粒子重采样的改进粒子滤波算法。该算法是在标准粒子滤波算法的基础上,加入粒子补偿的步骤,然后利用预测值与观测值的方差在权值较高的粒子周围进行重采样来改善标准粒子滤波算法中粒子多样性丧失问题。实验结果表明:在相同条件下,改进粒子滤波算法比标准粒子滤波算法具有更小的平均均方误差(RMSE)和更高的目标跟踪精度,数据表明,其目标跟踪精确度提高30%以上。 Point to the issue that after standard particle filter for resample, it would come into being problem of the loss of particle diversity. For this reason, a new improved particle filter algorithm is presented. The algorithm is based on standard particle filter, adding particle compensation steps, and changing the method of resample. The method is that particles resample around of the high wrights of particles by the variance of the predicted values and the observation data. The improved particle filter is compare for the standard particle filter, on the basis of the experimental results, improved algorithm has smaller average tnean -square errors (RMSE), and more target tracking precision. The data show that the tareet trackinz orecision raises 30% above.
出处 《电视技术》 北大核心 2012年第7期16-19,23,共5页 Video Engineering
基金 信号与信息处理重庆市市级重点实验室建设项目(CSTC 2009CA2003) 重庆市自然科学基金项目(CSTC 2010BB2411)
关键词 粒子滤波 重采样 粒子多样性 平均均方误差 particle filter resampling particle diversity average mean-square errors
  • 相关文献

参考文献8

二级参考文献51

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 4Musso C, Oudjane N, Legland F. Improving regularized particle filters[ M] //Doucet A, de Freitas J F G, Gordon N J [ M ]. Sequential Monte Carlo Methods in Practice. New York : Springer-Verlag,2001:247 - 272.
  • 5Crisan, Dan, Doucet, Arnaud. A Survey of Convergence Resuits on Particle Filtering Methods for Practitioners [ J ]. IEEE Transactions on Signal Processing ,2002,50 ( 3 ) : 736 - 746.
  • 6Bruno, Marcelo G S. Improved Sequential Monte Carlo Filtering for Ballistic Target Tracking[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41 ( 3 ) : 1103 - 1108.
  • 7Douceta,Godsill S, AND - EU C. On sequential Monte Carlo sampling methods for Bayesian filtering[ J]. Statistics and Computing ,2000,10( 3 ) : 197 - 208.
  • 8Bergman N, Bayesian R. Estimation:Navigation and tracking applications [ D ]. Sweden : Linkoping University, 1999.
  • 9Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation and tracking [ J ]. IEEE Transaction on Signal Processing,2002,50 ( 2 ) :425 - 437.
  • 10Crisan D,Doucet A.A survey of convergence results on particle filtering methods for practitioners[J].IEEE Transactions on Signal Processing, 2002,50(3 ) : 736-746.

共引文献65

同被引文献81

  • 1田晓宇,李明干,刘沛.基于Kalman滤波的神经网络学习算法及其应用[J].计算机与数字工程,2005,33(2):40-42. 被引量:8
  • 2章毓晋.图像工程[M].北京:清华大学出版社,2006.3.
  • 3OKUMA K,TALEGHANI A,FREITAS N. A boosted particle filter:mul- titarget detection and tracking [ J ]. Lecture Notes in Computer, Science, 2004,30(21 ) :28-39.
  • 4LI A P,JING Z L,HU S Q. Learning-based appearance model for proba- bilistic visual tracking[ J ]. Optical Engineering,2006,45 (7) : 177-204.
  • 5NUMMIARO K,KOLLER-MEIER E,VAN G L. An adaptive color-based particle filter[J]. Image and Vision Computing,2003,21 ( 1 ) :99-100.
  • 6Haykin S Ed. Kalman Filtering and Neural Networks [ M ]. New York: John Wiley & Sons, 2001 : 16-20.
  • 7Barshalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation : Theory, Algorithms, and Soft- ware [M]. New York: John Wiley & Sons, 2001: 381-395.
  • 8Arulampalam M, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2) :174-188.
  • 9Doucet A, Gordon N, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems [ J ]. IEEE Trans. on Signal Processing, 2001,49(3). 613-624.
  • 10Chen Zhe. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond [ R ]. Hamilton: McMaster University, 2003.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部