期刊文献+

压缩感知在传感器网络中的应用研究 被引量:1

Compressed Sensing in Wireless Sensor Networks
下载PDF
导出
摘要 无线传感器网络(Wireless Sensor Networks,WSN)被应用在诸多领域,如在工业自动化、环境检测、网络控制、生物及能量管理等方面。主要讨论了压缩感知在传感器网络中的应用,研究了压缩感知在传感器网络中应用所需的数学基础,以及重要参数的描述。 Wireless Sensor Networks(WSN) are adopted in many applications, such as industrial automation, environmental monitoring, web control- ling, biomedical and energy management and so on. In this paper, the compressed sensing applications in sensor networks are discussed, the mathematical foundation of compressed sensing required in sensor network applications is researched, and a description of the important parameters is also given.
出处 《电视技术》 北大核心 2012年第7期64-66,111,共4页 Video Engineering
基金 国家自然科学基金项目(60672157) 重庆市自然科学基金重点项目(CSTC 2011BA2016)
关键词 无线传感器网络 压缩感知 传感器节点 稀疏信号 wireless sensor networks compressed sensing sensor node sparse signal
  • 相关文献

参考文献10

  • 1AMARO J P,FERREIRA F J T E,CORTESAO R,et al. Low cost wire- less sensor network for in - field operation monitoring of induction motors [ C]//Proc. IEEE International Conference on Industrial Technology.[S. 1. ] :IEEE Press ,2010 :1044-1049.
  • 2DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theo- ry ,2006,52 (4) : 1259-1306.
  • 3TILAK S,ABU-GHAZALEH N B, HEINZELMAN W. A taxonomy of wireless micro-sensor network models[ J]. Mobile Computing and Com- munications Review,2002,1 (2) : 1-8.
  • 4AKYILDIZ L F, SU W L, SANKARASUBRAMANIAM Y,et al. A sur- vey on sensor networks [ J ]. IEEE Communications Magazine, 2002,40 (8) : 102-114.
  • 5RENTALA P, MUSUNURI R, GANDHAM S,et al. Survey on sensor networks [ R ]. Texas : University of Texas at Dallas,2002.
  • 6CIANCIO A, PATTEM S, ORTEGA A, et al. Energy-efficient data rep- resentation and routing for wireless sensor networks based on a distribu- ted wavelet compression algorithm[ C ]//Proc. ACM/IEEE Internation- al Symposium on Information Processing in Sensor Networks. Palo Alto, o CA, USA : Springer Verlag,2006 : 309-316.
  • 7SHEN G, ORTEGA A. Joint routing and 2d transform optimization for irregular sensor network grids using wavelet lifting[ C ]//Proc. 7th in- ternational Conference on Information Processing in Sensor Networks. [ S. 1. ] : IEEE Press,2008 : 183-194.
  • 8CHOU C T, RANA R, HU W. Energy" efficient information collection in wireless sensor networks using adaptive compressive sensing [ C ]// Proc. 1EEE 3gth Conference on Local Computer Networks. [ S. 1. ] : IEEE Press,2009:443-450.
  • 9CHOI K,WANG J,ZHU L,et al. Compressed sensing based cone-beam computed tomography reconstruction with a first-order methed[ J ]. A- merican Association of Physicists in Medicine, 2010, 37 ( 9 ) : 5113 -5125.
  • 10BARON D, WAKIN M B, SARVOTHAM S. Distributed compressed sensing [ D ]. Houston : Rice University,2006.

同被引文献42

  • 1RICHARD G. Compressive sensing [J]. IEEE Signal Processing Maga- zine,2007,24(4) : 118-121.
  • 2CANDES E, WAKIN M. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25 (2) :21-30.
  • 3DUARTE M,DAVENPORT M, TAKHAR D, et al. Single-pixel imaging via compressive sampling[ J]. IEEE Signal Processing Magazine ,2008,25 (2) :83-92.
  • 4GAN L. Block compressed sensing of natural images[ C]//Proc. Interna- tional Conference on Digital Siagnal Processing. Cardiff, UK :IEEE Press, 2007:403-406.
  • 5DO T,GAN L,NGUYEN N,et al. Fast and efficient compressive sensing using structurally random matrices [ J ]. IEEE Trans. Signal Processing, 2012,60( 1 ) : 139-154.
  • 6CANDES E, ROMBERG T,TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans. Information Theory ,2006,52 (2) :489-509.
  • 7CANDES E, ROMBERG J ,TAO T. Stable signal recovery from incomplete and inaccurate measurements [ J]. Communications on Pure and Applied Mathematics ,2006,59(8 ) : 1207-1223.
  • 8DONOHO D. Compressed sensing [J ]. IEEE Trans. Information Theory, 2006,52(4) : 1289-1306.
  • 9CANDES E, ROMBERG J. Practical signal recovery from random projec- tion [ C ]//Proc. SPIE Computational Imaging. [ S. 1. ] : IEEE Press, 2005:76-86.
  • 10ELAD M. Sparse and redundant representations [ M ]. New York:Spring- er Science + Business Media, LLC ,2010.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部