期刊文献+

基于SVM的Web文本快速增量分类算法 被引量:6

Fast incremental learning SVM for Web text classification
下载PDF
导出
摘要 针对基于支持向量机的Web文本分类效率低的问题,提出了一种基于支持向量机Web文本的快速增量分类FVI-SVM算法。算法保留增量训练集中违反KKT条件的Web文本特征向量,克服了Web文本训练集规模巨大,造成支持向量机训练效率低的缺点。算法通过计算支持向量的共享最近邻相似度,去除冗余支持向量,克服了在增量学习过程中不断加入相似文本特征向量而导致增量学习的训练时间消耗加大、分类效率下降的问题。实验结果表明,该方法在保证分类精度的前提下,有效提高了支持向量机的训练效率和分类效率。 In Web text classification,with extremely large scale of the training set and the characteristic of changing rapidly,this paper proposed an algorithm named FVI-SVM based on incremental SVM for fast Web text classification.In order to conquer the problem of low efficiency of SVM which was aroused by a large scale of training set,datas in incremental training set which violate conditions of KKT would be exterminated.In order to conquer the problem of redundant support vectors which lead to the increasing of taining time consumption and decreasing of classification efficiency in incremental learning,exterminated the redundant support vectors by calculating shared nearest neighbors similarity.Experimental results show that the proposed method enhances the training and classification efficiency on a premise ensure the accuracy of classification.
出处 《计算机应用研究》 CSCD 北大核心 2012年第4期1275-1278,共4页 Application Research of Computers
基金 高校博士点基金资助项目(20093227110005) 校高级人才启动基金资助项目(09JDG041) 省科技型企业创新资金资助项目(BC2010172)
关键词 支持向量机 支持向量 最优分类超平面 KKT条件 文本特征向量 support vector machine(SVM) support vector optimal separating hyper-plane Karush-Kuhn-Tucher(KKT) text feature vector
  • 相关文献

参考文献6

  • 1PRONOBIS A,LUO Jie,CAPUTO B.The more you learn,the less youstore:memory-controlled incremental SVM for visual place recognition[J].Image and Vision Computing,2010,28(7):1080-1097.
  • 2DUAN Hua,SHAO Xiao-jian,HOU Wei-zhen,et al.An incrementallearning algorithm for Lagrangian support vector machines[J].Pat-tern Recognition Letters,2009,30(15):1384-1391.
  • 3吴崇明,王晓丹,白冬婴,张宏达.基于类边界壳向量的快速SVM增量学习算法[J].计算机工程与应用,2010,46(23):185-187. 被引量:8
  • 4YI Yang,WU Jian-sheng,XU Wei.Incremental SVM based on re-served set for network intrusion detection[J].Experts Systems withApplications,2011,38(6):7698-7707.
  • 5SALTON G,WONG A,YANG C S.A vector space model for automa-tic indexing[J].Communication of the ACM,1975,18(11):613-620.
  • 6NGUYEN D,HO T B.A bottom-up method for simplifying supportvector solutions[J].IEEE Trans on Neural Networks,2006,17(3):792-796.

二级参考文献10

  • 1李东晖,杜树新,吴铁军.基于壳向量的线性支持向量机快速增量学习算法[J].浙江大学学报(工学版),2006,40(2):202-206. 被引量:16
  • 2Vapnik V N.The nature of statistical learning theory[M].2nd ed. New York: Springer-Verlag, 2000.
  • 3Zhang Yizhuo.Constructing multiple support vector machines ensemble based on fuzzy integral and rough reducts[C]//Proceedings of 2nd IEEE Conference on Industrial Electronics and Applications, 2007:1256-1259.
  • 4Kivinen J, Smola A J,Williamson R C.Online learning with kernels[C]//Proc of Advances in Neural Information Processing Systems, Cambridge, MA, 2002.
  • 5Cauwenberghs G, Poggio T.Incremental and decrementa! support vector machine leaming[J].Machine Learning ,2001,44( 13 ) :4098-4151.
  • 6Syed N, Liu H, Sung K K.Incremental learning with support vector machines[C]//Proc of Workshop on Support Vector Machines at the International Joint Conference on Artificial Intellgence(IJCAI-99), Stockholm, Sweden, 1999.
  • 7Barber C B, Dobkin D P, Huhdanpaa H T.The quickhull algorithm for convex hulls[EB/OL].http ://www.qhull.org.
  • 8Bennett K P,Bredensteiner E J.Duality and geometry in SVM classifiers[M].San Francisco,CA:Morgan Kaufmann,2000.
  • 9Keerthi S S, Shevade S K, Bhattacharyya C, et al.A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Transaction on Neural Network, 2000, 11 (1): 124-136.
  • 10萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法[J].南京大学学报(自然科学版),2002,38(2):152-157. 被引量:24

共引文献7

同被引文献51

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部