期刊文献+

基于机器视觉的停车位检测技术的研究 被引量:7

Research on Parking State Detection Method Based on Machine Vision
下载PDF
导出
摘要 文章提出了一种基于机器视觉技术的停车位状态检测方法;为了能在嵌入式系统上实现基于机器视觉的停车位状态检测,首先通过定制停车位区域,并在定制的区域内按照某种规则自动生成采样点,极大地减少了图像处理的计算资源和存储资源;其次,根据车辆驶入停车位时引起相关采样点灰度值发生变化情况进行停车位检测;最后,采用以空间高度来定制虚拟停车位,解决了相邻车位的车辆遮挡问题,通过形状匹配等算法排除路面上异常物体等各种干扰;实验结果表明,该方法不仅具有很高的检测精度和实时性,还具有较好的鲁棒性。 A parking state detection method based On machine vision is presented in this paper. In order to detect the parking state based on machine vision, firstly, computing and storage resources in embedded system are reduced in image processing through customizing the parking area and generating sampling points automatically in the custom area according to certain rules; Secondly, the parking state is detec- ted according to the change of the gray value of relevant sampling points when vehicle come into parking; Finally, virtual parking space is cus- tomized using some space height to solve the problem of block interference between adjacent vehicles, and interferences of afferent objects in the parking are eliminated through shape matching algorithm. Experiment results show that the parking state detection algorithm has high accuracy, real time and robust feature.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第3期638-641,共4页 Computer Measurement &Control
基金 国家自然科学基金(61070134)
关键词 机器视觉 采样点 车辆检测 车辆遮挡 形状匹配 machine vision sampling points parking detection block interference between vehicles shape matching
  • 相关文献

参考文献5

二级参考文献28

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2张恒博,欧宗瑛.一种基于色彩和灰度直方图的图像检索方法[J].计算机工程,2004,30(10):20-22. 被引量:40
  • 3张志军,孙志辉.基于VC平台的彩色图像的灰度化技术[J].自动化技术与应用,2005,24(1):61-63. 被引量:19
  • 4Kim J B, Kim H J. Efficient region-based motion segmentation for a video monitoring system[J]. Pattern Recognition Letters, 2003,24(1):113-128.
  • 5Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [EB/OL]. http://www.cs.cmu. edu, 2004-06-04.
  • 6Vieren C, Cabestaing F, Postaire J. Catching moving objects with snakes for motion tracking[J].Pattern Recognition Letters,1995,16(7):679-685.
  • 7Dubuisson M P, Lakshmanan S, Jain A K.Vehicle segmentation and classification using deformable templates[J].IEEE Trans, PAMI, 1996,18(3):293-307.
  • 8Lee S, Oh S C, Son B. Heuristic algorithm for traffic condition classification with loop detector data[ C ]//2005 International Conference Proceedings on Computational Science and Its Applications ,2005:816 -821.
  • 9EI-Geneidy A M, Ahmed M,Bertini R L. Toward validation of freeway loop detector speed measurements using Transit probe data[C]//7th International IEEE Conference Proceedings on Intelligent Transportation Systems,2004:779 -784.
  • 10Coifman B, Ergueta E. Improved vehicle reidentification and travel time measurement on congested freeways[J]. Journal of Transportation Engineering ,2003,129 (5) :475-483.

共引文献117

同被引文献45

  • 1关胜晓.机器视觉及其应用发展[J].自动化博览,2005,22(3):88-92. 被引量:23
  • 2郑永成,王洋,何建国,黄文.基于磁场分割的磁导计算与磁路设计[J].机械与电子,2006,24(7):11-13. 被引量:13
  • 3彭春华,刘建业,刘岳峰,晏磊,郑江华.车辆检测传感器综述[J].传感器与微系统,2007,26(6):4-7. 被引量:46
  • 4黄战华,马铭,蔡怀宇,张尹馨.一种基于视频的停车场车位监控算法[J].科学技术与工程,2007,7(17):4511-4514. 被引量:4
  • 5Bauza R,Gozalvez J.Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications[J].Journal of Network and Computer Applications,2013,36(5):1295-1307.
  • 6Bauza R,Gozalvez J,Sanchez-Soriano J.Road traffic congestion detection through cooperative vehicle-to-vehicle communications[C]//2010 IEEE 35th Conference on Local Computer Networks(LCN).IEEE,2010:606-612.
  • 7Mandal K,Sen A,Chakraborty A,et al.Road traffic congestion monitoring and measurement using active RFID and GSM technology[C]//2011 14th International IEEE Conference on Intelligent Transportation Systems(ITSC).IEEE,2011:1375-1379.
  • 8Vaqar S A,Basir O.Traffic pattern detection in a partially deployed vehicular ad hoc network of vehicles[J].Wireless Communications,IEEE,2009,16(6):40-46.
  • 9Palubinskas G,Kurz F,Reinartz P.Detection of traffic congestion in optical remote sensing imagery[C]//Geoscience and Remote Sensing Symposium,2008.IGARSS 2008.IEEE International.IEEE,2008,2:II-426-II-429.
  • 10Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部