期刊文献+

AMSR与SVM相结合的人脸识别方法 被引量:4

Face Recognition Method by Combining AMSR with SVM
下载PDF
导出
摘要 为解决在复杂光照条件下的人脸识别问题,提出一种自适应多尺度Retinex(AMSR)和支持向量机(SVM)相结合的人脸识别算法;首先,针对多尺度Retinex(MSR)只能处理光照均匀图像的缺点,提出了AMSR算法,该算法在MSR基础上增加了全局非线性对比度增强方法,使图像的灰度能够根据人脸图像的明暗度进行全局自适应调整,实现了各种光照条件下的人脸图像预处理;然后利用SVM多分类算法对人脸图像进行分类;在人脸库的实验结果证明了AMSR+SVM人脸识别算法的有效性。 In order to solve the problem of face recognition under the complicated lighting conditions, a face recognition algorithm based on the combination of Adaptive Multi--Scale Retinex (AMSR) and Support Vector Machine (SVM) was proposed. At first, aiming at the disadvantage that Multi--Scale Retinex algorithm (MSR) can only deal with the illumination average image, AMSR was proposed. Global nonlinear contrast enhancement was added on MSR in this algorithm, and image's grayscale could be adjusted with global and self--adaption according to face image's shading value, then face image pretreatment was realized under multiple lighting conditions. Later, face images were classified by SVM multi--class algorithm. The experimental results under face library show the effectiveness of AMSR+ SVM face recognition algorithm.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第3期823-825,844,共4页 Computer Measurement &Control
基金 国家青年科学基金(61003162) 辽宁省重点实验室(2008s115)
关键词 人脸识别 光照 多尺度RETINEX 自适应 支持向量机 face recognition illumination multi--scale retinex self--adaption support vector machine
  • 相关文献

参考文献11

  • 1卿来云,山世光,陈熙霖,高文.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768. 被引量:27
  • 2张熠,郭琳,张桂林.基于局部定性表达的光照不变人脸识别方法[J].计算机应用,2008,28(5):1276-1279. 被引量:1
  • 3Shan S G,Gao W,Cao B.Illumination normalization for robust face recognition against varying lighting conditions[A]//Proc IEEE Workshop on AMFG[C].2003:157-164.
  • 4Savvides M,Kumar V.Illumination normalization using logarithm transforms for face authentication[A]//Proc IAPR AVBPA[C].2003:549-556.
  • 5Meylan L,Siisstrunk S.High dynamic range image rendering with a retinex-based adaptive filter[J].IEEE Transactions on Image Processing,2006,15(9):2820-2830.
  • 6Jobson D J,Rahman Z,Woodell G A.Properties and performance of a center/surround Retinex[J].IEEE Transactionson Image Pro-cessing,1997,6(3):451-462.
  • 7葛微,李桂菊,程宇奇,薛陈,朱明.利用改进的Retinex进行人脸图像光照处理[J].光学精密工程,2010,18(4):1011-1020. 被引量:46
  • 8Hsu C W,Lin C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Network,2002,13(2):415-425.
  • 9杨长盛,陶亮.几种机器学习方法在人脸识别中的性能比较[J].计算机工程与应用,2009,45(4):169-172. 被引量:7
  • 10Li Z F,Tang X O.Using support vector machines to enhance the performance of Bayesian face recognition[J].IEEE Transactions on Information Forensics and Security,2007,2(2):174-180.

二级参考文献85

  • 1王彦臣,李树杰,黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学精密工程,2006,14(1):70-76. 被引量:47
  • 2Wei P,Xiong Wei-qing,Wang Xiao-quan.A design and complement for face recognition[C]//Proc of 2004 International Conference on Machine Learning and Cybernetics,2004:3666-3669.
  • 3Er M J,Wu S,Lu J,et al.Face recognition with radial basis function(RBF) neural networks[J].IEEE Transactions on Neural Networks, 2002,13 ( 3 ) : 697-710.
  • 4Hecht-Nielson R.Theory of the back-propagation neural network[C]//IJCNN, 1989,1: 583-604.
  • 5Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Transactions on Neural Networks,1991,2(2):302-309.
  • 6Cortes C,VapniK V.Support vector networks[J].Machine Learning, 1995,20:1-25.
  • 7Dietterich T G.Machine learning research:Four current directions[J]. AI Magazine, 1997,18(4):97-136.
  • 8Kearns M,Valiant L G.Learning Boolean formulae or factoring, TR-1488[R].Aiken Computation Laboratory,Harvard University, Cambridge, MA, 1988.
  • 9Hansen L K,Salamon P.Neural network ensembles[J].IEEE Trans Pattern Anal Math Intell, 1990,12(10) :993-1001.
  • 10Krogh A,Vedelsby J.Neural network ensembles,cross validation and active leaming[C]//Touretzky D S,Tesauro G,Leen T K. Advances in Neural Information Processing Systems.[S.l.]:The MIT Press, 1995,7 : 231-238.

共引文献104

同被引文献45

  • 1陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 2袁玉萍,陈庆华,汪洪艳.关于支持向量机VC维问题证明的研究[J].农业与技术,2006,26(3):210-211. 被引量:4
  • 3邱道尹,张红涛,刘新宇,刘彦楠.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(1):120-122. 被引量:33
  • 4刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 5Rao A, Noushath S. Subspace methods for face recognition [J]. Computer ScienceReview, 2010, 4 (1): 1-17.
  • 6Delae K, Grgic M, Grgic S. Face recognition in JPEG and JPEG2000 compressed domain [J]. Image and Vision Computing, 2009, 27 (8): 1108-1120.
  • 7Jing X Y, Zhang D. A face and palmprint recognition approach based on discriminant DCT feature extraction [J]. IEEE Transac- tions on System, Man and Cybernetics, Part B: Cybernetics, 2004, 34 (6): 2"405-2415.
  • 8Er M J, Chen W, Wu S. High speed face recognition based on dis- crete cosine transform and RBF neural networks [J]. IEEE Trans- actions on Neural Networks, 2005, 16 (3): 679-691.
  • 9Dabbaghchian S, Ghaemmaghami M P0 Aghagolzadeh A. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology [J]. Pattern Recogni- tion, 2010, 43 (4): 1431-1440.
  • 10Li W H,Liu L J,Gong W G. Multi-object uniform designas a SVM model selection tool for face recognition [J]. Ex-pert Systems with Application,2011,38(6):6689-6695.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部