期刊文献+

基于计算智能和信息熵的故障组合预测研究 被引量:4

Combined Fault Prediction Based on Computing Intelligence and Information Entropy
下载PDF
导出
摘要 针对单项预测方法鲁棒性弱和稳定性差的不足,研究了一种基于计算智能和信息熵的故障组合预测方法.利用粗糙集、遗传算法、免疫算法改进基本神经网络的神经元结构、权重计算方法和隐含层激励函数,构造了融合各项算法特长的计算智能方法,实现了电子设备特征参数的退化趋势预测;基于信息熵理论,采用多准则评价对前述单项预测方法进行融合,实现了电子设备的故障组合预测.通过跟踪预测实际环境中的设备工作数据,验证了基于计算智能预测的有效性和基于信息熵组合预测的稳定性. A combined fault prediction method based on computing intelligence and information entropy was proposed to enhance the robust ability and stability of single prediction method. The rough set was used to ameliorate the structure of neurons of basic neural network, the genetic algorithm for the weight determination, and the immune algorithm for the activation function of hidden layer. Then the intelligent computing method with the advantages of all above methods was realized, and the characteristic parameters of electronic equipment were tracked and predicted with these methods. Based on information entropy theory, the com- bined fault prediction method was obtained which enhanced the reliability of prediction results by fusing the above prediction methods with multirules. The combined prediction method was applied to onetype electronic equipment for tracking and predicting the parameters. Results testified the validity of prediction based on intelligent computing and the stability of the combined prediction based on information entropy.
出处 《测试技术学报》 2012年第2期162-170,共9页 Journal of Test and Measurement Technology
基金 国家高技术研究发展计划(863计划)(2011AAXX0406)资助项课题 "十二五"国防预研项目(513170XX01)资助课题 空军工程大学研究生创新基金(Dx2010107)资助课题
关键词 故障预测 计算智能 信息熵 组合预测 fault prediction computing intelligence information entropy combined prediction
  • 相关文献

参考文献13

  • 1Hess A,Fila L.The Joint Strike Fighter(JSF)PHMconcept:potential impact on aging aircraft problems[C].Proceeding of IEEEAerospace Conference,2002:3021-3026.
  • 2Gill J J.Lessons learned fromrotary and fixed-wing HUMS applications[C].Proceedings of IEEE Aerospace Conference,2000:423-431.
  • 3Greitzer F L,Plwlowski R A.Embedded prognostics health monitoring[C].Proceedings of International Instrumentation Symposium,2002:301-303.
  • 4罗乖林.航空装备安全性面临的主要问题及对策建议[J].航空装备质量与安全,2007,:7-12.
  • 5张嘉钟,张利国.航空设备故障预测与健康管理设备[J].航空制造技术,2008,51(2):38-43. 被引量:11
  • 6曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 7Byer B,Hess A,Final L.Writing a convincing cost benefit analysis to substantiate autonomic logistics[C].Big Sky:AerospaceConference 2001 IEEE Proceedings,2001:3095-3103.
  • 8Hess A,Calvello G,Dabney T.PHMa key enablerforthe JSFautonomic logistics support concept[C].NewYork:Aerospace Con-ference 2004 IEEE Proceedings,2004:3543-3550.
  • 9Leao B,Fitzgibbon K,Puttini L.Cost-benefit analysis methodology for PHMapplied to legacy commercial aircraft[C].Big Sky:Proceedings of the IEEE Aerospace Conference,2008.
  • 10Bates J M,Granger C MJ.The combination of forecasts[J].Operational Research,1969,20:451-468.

二级参考文献61

共引文献394

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部