期刊文献+

WSN节点的粒计算网格化定位算法 被引量:2

Grid localization of nodes by granular computing in wireless sensor networks
下载PDF
导出
摘要 接收信号强度作为一种低功率廉价的测距方式而用于估计无线传感器网络的节点位置,但定位精度会受到时空传播介质的影响,构造快速算法是解决该问题的主要方法之一。对定位区域网格化,提出了基于粒计算的快速网格化定位算法。将定位问题转化为分类问题,利用粒计算分类算法,得到定位参数,估计未知节点的位置。实验结果表明与支持向量机定位相比粒计算网格化定位算法降低了定位误差和时间。 Received signal strength is one of ranging methods with low-power and low-cost, and used to estimate the location of nodes in wireless sensor network. The localization accuracy is affected by the time and space media, the fast algorithm is one of methods, which can improve the localization accuracy. The fast grid localization algo-rithm based on granular computing is proposed by forming the grid of localizing area. The localization problems are transformed into classification problems, and the granular computing classification algorithm is used to obtain the parameters related to the localization, which are used to estimate the locations of blind nodes. The experimental results show that grid localization algorithm based on granular computing can reduce the localization error and time consuming compared with localization by support vector machines.
出处 《计算机工程与应用》 CSCD 2012年第10期16-19,53,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170202) 河南省基础研究与前沿技术项目 河南省高校青年骨干教师资助计划(No.2011GGJS-119)
关键词 无线传感器网络 定位 粒计算 Wireless Sensor Network localization granular computing
  • 相关文献

参考文献10

  • 1Karp B,Kung H T.GPSR:greedy perimeter stateless routing for wireless networks[C]//Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking,2000.
  • 2He T,Huang C,Blum B M,et al.Range-free localiza-tion schemes for large scale sensor networks[C]//Pro-ceedings of the9th Annual International Conference on Mobile Computing and Networking,2003.
  • 3Nagpal R,Shrobe H,Bachrach J.Organizing a global co-ordinate system from local information on an Ad hoc sensor network[C]//Second International Workshop on In-formation Processing in Sensor Networks,2003.
  • 4Guha S,Murty R,Sirer E.Sextant:a unified node and event localization framework using non-convex con-straints[C]//ACM International Symposium on Mobile Ad Hoc Networking and Computing,2005.
  • 5Bachrach J,Taylor C.Handbook of sensor networks[M].[S.l.]:Wiley,2005.
  • 6Zadeh L A.Fuzzy sets and information granulation[M].[S.l.]:North Holland Publishing,1979.
  • 7Zadeh L A.Toward a theory of fuzzy information granu-lation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Sets and Systems,1997,90(2):111-127.
  • 8Kaburlasos V G,Petridis V.Fuzzy Lattice Neurocomput-ing(FLN):a novel connectionist scheme for versatilelearning and decision making by clustering[J].Interna-tional Journal of Computers and Their Applications,1997,4(3):31-43.
  • 9Kaburlasos V G,Athanasiadis I N,Mitkas P A.Fuzzy Lattice Reasoning(FLR)classifier and its application for ambient ozone estimation[J].International Journal of Approximate Reasoning,2007,45:152-188.
  • 10Liu H,Xiong S,Fang Zhixiang.FL-GrCCA:a granular computing classification algorithm based on fuzzy lat-tices[J].Computers and Mathematics with Applications,2011,61(1):138-147.

同被引文献22

  • 1翟利超,吕久明.数据链及其对抗方法研究[J].舰船电子对抗,2004,27(6):26-29. 被引量:22
  • 2彭丽萍,岳东.无线网络控制系统的研究[J].控制工程,2006,13(5):481-484. 被引量:11
  • 3汪小帆,李翔,陈关荣.复杂网络理论及应用[M].北京:清华大学出版社,2006.
  • 4Ra)an R. , Kamalam G. K. Priority based Heuristic Job Scheduling Algorithm for the Computational Grid [C]//2013 International Conference on Information Communication and Embedded Systems ( ICICES ), Chennai, India, Feb. , 2013: 448-451.
  • 5Mendes G. A., Sato L. M., Massetto F. I. A Paral- lel Application Programming and Processing Environ ment Proposal for Grid Computing[C]//2012 IEEE 15th International Conference on Computational Science and Engineering(CSE), Nicosia, Cyprus, Dec. , 2012: 154-161.
  • 6Goswami S. , De Sarkar A. A Comparative Study of Load Balancing Algorithms in Computational Grid En- vironment[C]//2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation (CIMSim), SeouI, South Korea, Sept. ,2013 : 99-104.
  • 7Shidong Oo , Xiang D. , Zhong L. , et al. Improving the Optimization Performance of NSC-A-Ⅱ Algorithm by Experiment Design Methods[C]//2012 IEEE Inter- national Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Tianjin, China, Jul. , 2012 : 82-85.
  • 8Huang R M,Qiu X,Ye L.Probability-based fault detection in wireless sensor networks[C]//2010 International Conference on Network and Service Management,2010:218-221.
  • 9Trab S,Boussaid B,Zouinkhi A.Energy minimization algorithm based on Bayesian approach for fault tolerant detection in wireless sensor network[C]//14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering,2013:237-242.
  • 10Barabasi A L.Scale-free networks:a decade and beyond[J].Science,2009,325(5939):412-413.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部