摘要
在线性增长和次线性增长条件下,利用临界点理论中的极小作用原理和鞍点定理,研究了二阶非自治Hamilton系统周期解的存在性问题,获得了一些新的可解性条件.
By making use of the least action principle and the minimax methods, we study the existence of periodic solutions for some non-autonomous second order Hamiltonian systems in the cases of the sublinear growth and linear growth . Some new solvability conditions are obtained.
出处
《应用泛函分析学报》
CSCD
2012年第1期71-78,共8页
Acta Analysis Functionalis Applicata
关键词
二阶非自治HAMILTON系统
极小作用原理
鞍点定理
次线性增长
线性增长
non-autonomous second order Hazniltonian systems
periodic solutions
sublineargrowth
linear growth
the least action principle
saddle point theorem