期刊文献+

一类二阶非自治Hamilton系统的周期解 被引量:1

Periodic Solution of Some Non-Autonomous Second Order Hamiltonian Systems
下载PDF
导出
摘要 在线性增长和次线性增长条件下,利用临界点理论中的极小作用原理和鞍点定理,研究了二阶非自治Hamilton系统周期解的存在性问题,获得了一些新的可解性条件. By making use of the least action principle and the minimax methods, we study the existence of periodic solutions for some non-autonomous second order Hamiltonian systems in the cases of the sublinear growth and linear growth . Some new solvability conditions are obtained.
出处 《应用泛函分析学报》 CSCD 2012年第1期71-78,共8页 Acta Analysis Functionalis Applicata
关键词 二阶非自治HAMILTON系统 极小作用原理 鞍点定理 次线性增长 线性增长 non-autonomous second order Hazniltonian systems periodic solutions sublineargrowth linear growth the least action principle saddle point theorem
  • 相关文献

参考文献8

  • 1Berger M S,Schechter M.On the solvability of semilinear gradient operator equations[J].Adv Math, 1977,25:97-132.
  • 2Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M],Springer-Verlag,Berlin,1989.
  • 3TANG Chunlei.Periodic solutions of nonautonomous second order systems with quasisubadditive potential [J].J Math Anal Appl,1995,189:671-675.
  • 4TANG Chunlei.Periodic solutions of nonautonomous second order systems[J].J Math Anal Appl,1996, 202:465-469.
  • 5TANG Chunlei.Periodic solutions of nonautonomous second order systems with sublinear nonlinearity[J]. Proc Amer Math Soc,1998,126:3263-3270.
  • 6WU Xingping,TANG Chunlei.Periodic solution of a class of non-autonomous second order systems[J]. J Math Anal Appl,1999,236:227-235.
  • 7WU Xin.Saddle point characterization and multiplicity of periodic solutions of nonautonomous second order systems[J].Nonlinear Anal,TMA 2004,58:899-907.
  • 8ZHANG Xingyong,ZHOU Yinggao.Periodic solutions of nonautonomous second order systems[J].J Math Anal Appl,2008,345:929-933.

同被引文献4

  • 1Xian Wu,Shaoxiong Chen,Kaimin Teng.On variational methods for a class of damped vibration problems[J].Nonlinear Analysis.2007(6)
  • 2Chun-Lei Tang,Xing-Ping Wu.Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems[J].Journal of Mathematical Analysis and Applications.2002(2)
  • 3Chun-Lei Tang,Xing-Ping Wu.Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential[J].Journal of Mathematical Analysis and Applications.2001(2)
  • 4Chun-Lei Tang.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[J].Proceedings of the American Mathematical Society.1998(11)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部