期刊文献+

约束集值优化问题的二阶最优性条件 被引量:2

Second-Order Optimality Conditions for Constrained Set-Valued Optimization Problems
下载PDF
导出
摘要 给出集值映射二阶导数的定义,并讨论了其相关性质.运用此二阶导数及二阶相依导数,建立了约束集值优化问题的二阶必要最优性条件.在有限维空间中得到了约束集值优化问题的二阶充分最优性条件. A second-order derivative for set-valued maps was pro posed and its properties were discussed.By means of this derivative and second-order contingent derivative,some second-order necessary optimality condition s were established for constrained set-valued optimization problems.And some s econd-order sufficient optimality conditions were obtained for constrained set-valued optimization problems in finite-dimensional normed spaces.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期244-250,共7页 Journal of Jilin University:Science Edition
基金 中央高校基本科研业务费项目(批准号:CDJXS11100033)
关键词 二阶相依集 渐近二阶相依导数 集值优化 最优性条件 second-order contingent set asymptotic second-ord er contingent derivative set-valued optimization optimality condition
  • 相关文献

参考文献1

二级参考文献8

共引文献3

同被引文献25

  • 1BurkeJ V. Ferris M C. A Gauss-Newton Method for Convex Composite Optimization[J]. Mathematical Programming. 1995. 71(2): 179-194.
  • 2Combari C. Laghdir M. Thibault L. A Note on Subdifferentials of Convex Composite Functionals[J]. Archiv der Mathematik. 1996. 67(;3): 239-252.
  • 3Zalinescu C. Convex Analysis in General Vector Spaces[M]. Singapore: World Scientific. 2002.
  • 4ZHENG Xi-yin. Ng K F. Strong KKT Conditions and Weak Sharp Solutions in Convex Composite Optimization[J]. Mathematical Programming, 2011. 126(2): 259-279.
  • 5Bot R I, Grad S M. Wanka G. A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Infinite Dimensional Spaces[J]. Mathematische Nachrichten , 200S. 2S1(S): 10SS-1107.
  • 6Bot R I, Grad S M. Wanka G. Generalized Moreau-Rockafellar Results for Composed Convex Functions[J]. Optimization, 2009. 5S(7): 917-933.
  • 7Bot R 1. Conjugate Duality in Convex Optimization[M]. Berlin: Springer-Verlag, 2010.
  • 8LI Chong. FANG Dong-hui , Lopez G, et al. Stable and Total Fenchel Duality for Convex Optimization Problems in Locally Convex Spaces[J]. SIAMJournal on Optimization, 2009. 20(2): 1032-1051.
  • 9Fang D H. Li C. Ng KF. Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J]. Nonlinear Analysis: Theory. Methods &. Applications, 2010, 73(5) :.1143-1159.
  • 10Jeyakumar V, Dinh N, Lee G M. A New Closed Cone Constraint Qualification for Convex Optimization[R]. Sydney: University of New South Wales, 2004.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部