期刊文献+

自发性高血压大鼠左心室肌细胞动作电位延长的离子机制 被引量:3

The Ionic Mechanism of Prolongation of Action Potential in Hypertrophied Left Ventricular Myocytes from Spontaneously Hypertensive Rats
下载PDF
导出
摘要 目的:研究自发性高血压大鼠(SHR)左心室肌细胞动作电位时程延长的膜离子流基础。方法:应用酶解方法分离获得正常血压Wistar大鼠和SHR的左心室肌细胞,采用玻璃微电极技术记录动作电位,膜片钳全细胞记录膜离子流,对比正常心室肌细胞和肥大心室肌细胞间动作电位及膜离子流差别。结果:(1)SHR和Wistar大鼠的心脏/体重比分别为5.66±0.46 mg/g和 3.7±0.29 mg/g(P<0.001),细胞平均膜电容分别为 280.68±67.98 pF和 189.94±56.59 pF(P<0.05)。提示SHR心脏肥厚、心肌细胞增大;(2)SHR动作电位APD50和 APD90较Wistar大鼠明显延长(21.33±1. 56 ms vs 14. 91±2.95 ms,P<0.001; 164. 6±74 ms vs 93.27±10. 59 ms,P<0.001),说明SHR心室肌细胞存在复极延迟;(3)SHR的平均 I_(Ca-L)幅值显著大于Wistar大鼠,分别为 1944±466. 8 pA和1136±33.3 pA(P<0.001),电流密度二者间无差异(6. 932±1.71 pA/PF vs 6.19±2.85 pA/? Objective: To study the membrane ionic basis of action potential prolongation of hypertrophied left ventricular myocytes in spontaneously hypertensive rats (SHR ). Methods: The single left ventricular myocytes of SHR and normotensive Wistar rats were obtained enzymatically. The action potential was recorded using conventional microelec- trode technique and membrane ionic currents were recorded using patch-clamp whole cell recording technique. The action potential and membrane ionic currents of normal and hypertrophied left ventricular myocytes were compared. Results: (1)The heart weight to body weight ratio of SHR and Wistar rats was 5. 66±0. 46 mg/g and 3. 7± 0. 29 mg/g, respectively(p<0. 001), and the mean cell membrane capacitance, 280. 68± 67. 98 pF and 189. 94± 56. 59 pF, respectively (P< 0. 05 ), suggesting that SHR had heart hypertrophy and hypertrophied ventricular myocytes; (2) The APD_(50) and APD_(90) of action potential in SHR was significantly prolonged compared with Wistar rats (21. 33±1. 56 ms vs 14. 91 ± 2. 95 ms, P<0. 001 ± 164. 6± 7. 4 ms vs 93. 27± 10. 59 ms, P<0. 001 ), indicating that the left ventricular myocytes in SHR had delayed repolarization ; (3)The amplitude of I_(ca-L) of SHR (1944 ± 466. 8 pA) at + 10 mV was significantly greater than that of Wistar rats (1136 ± 383. 3 pA) (P< 0. 001 ), the current density of I_(ca-L) between them was not significant (6. 93 ± 1. 71 pA/pF vs 6. 19± 2. 85 pA/pF), but the slow inactivation time constant of SHR was significantly prolonged (56. 01 ± 13. 36 ms vs 43. 63± 17. 89 ms, P<0. 001 ) ; (4)The inward current density of I_(K1) in SHR at - 120 mV was significantly lower than that in Wistar rats (11. 3± ± 2. 26 pA/pF vs 14. 33 pA/ pF, P<0. 05), but there was no difference in outward current density at 0 mV(2. 36± 0. 86 pA/pF vs 2. 96± 1. 27 pA/ pF) ; (5)There was no difference in current density of I_k at + 90 mV between SHR and Wistar rats(12. 38± 5. 46 pA/pF vs 11. 86± 3. 59 pA/pF) ; (6)The current density of ito in SHR at + 70 mV was significantly lower than that in Wistar rats (8. 21 ± 6. 64 pA/pF vs 19. 16± 6. 17 pA/pF, P<0. 001 ). but the activation and inactivation time constants were similar. This indicated that the reduced ito may result from the decrease of channel numbers. Conclusion: The action potential prolongation of hypertro- phied left ventricular myocytes in SHR may result from the reduction of outward repolarizing potassium currents (I_(to), I_(K1) ) and the prolongation of slow inactivation time constant of I_(ca-L).
作者 李勋 蒋文平
出处 《高血压杂志》 CSCD 2000年第1期74-78,共5页 Chinese Journal of Hypertension
关键词 高血压 膜片钳技术 细胞动作电位 离子通道 spontaneously hypertensive rat patch-clamp cardiomyocytes potential action ionic channel myocardial hypertrophy
  • 相关文献

参考文献2

  • 1Gidh Jain M,Circulation Research,1996年,79卷,669页
  • 2Cerbai E,Cardiovasc Res,1994年,28卷,1180页

同被引文献22

  • 1[1]Shehadeh A,Regan TJ.Cardiac consequences of diabetes mellitus[J].Clin Cardiol,1995,18:301-305.
  • 2[2]Rodrigues B,Cam MC,McNeill JH.Myocardial substrate metabolism:implications for diabetic cardiomyopathy[J].J Mol Cell Cardiol,1995,27:169-179.
  • 3[3]Wang DW,Kiyosue T,Shigematsu S,et al.Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes[J].Am J Physiol,1995,268:H1288-1296.
  • 4[4]Qin DY,Huang BY,Deng LL,et al.Downregulation of K+channel genes expression in type-Ⅰ diabetic cardiomyopathy[J].Biochemical and Biophysical Research Communications,2001,283:549-553.
  • 5[5]Ren J,Davidoff AJ.Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes[J].Am J physiology,1997,272:H148-158.
  • 6[6]Shimoni Y,Severson D,Giles W.Thyroid status and diabetes modulate regional differences in potassium current in rat ventricle[J].Journal of physiology,1995,488:673-688.
  • 7[8]Rozanski GJ,Xu Z,Zhang K,et al.Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction[J].Am J Physiol Heart Circ Physiol,1998,274:H259-265.
  • 8[9]Cosis O,Echevarria E.Diabetic cardiomyopathy:Electromechanical cellular alteration[J].Curr Vas Pharmacol,2004,2:237-248.
  • 9[10]Fein FS,Strobeck JE,Malhotra A,et al.Reversibility of diabetic cardiomyopathy with insulin in rats[J].Circ Res,1981,49:1251-1261.
  • 10[11]Chen V,Janu D,Fong BC,et al.The effects of acute and chronic on myocardial mefabolism in rats[J].Diabetes,1984,33:1078-1084.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部